Domain structures and correlated out-of-plane and in-plane polarization reorientations in Pb(Zr0.96Ti0.04)O3 single crystal via piezoresponse force microscopy
Pb(Zr1-x Ti x )O3 single crystal with a low titanium content (x = 4%) was studied by the piezoresponse force microscopy (PFM) and X-ray diffraction (XRD). The XRD studies showed that the crystal faces are orthogonal to the principal cubic axes and confirmed the existence of an intermediate phase bet...
Saved in:
Published in | AIP advances Vol. 6; no. 9; pp. 095211 - 095211-7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
AIP Publishing LLC
01.09.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | Pb(Zr1-x
Ti
x
)O3 single crystal with a low titanium content (x = 4%) was studied by the piezoresponse force microscopy (PFM) and X-ray diffraction (XRD). The XRD studies showed that the crystal faces are orthogonal to the principal cubic axes and confirmed the existence of an intermediate phase between the high-temperature paraelectric (PE) phase and the low-temperature antiferroelectric (AFE) one. A significant temperature hysteresis of phase transitions was observed by the XRD: On heating, the AFE state transforms into the intermediate one at about 373 K and the PE phase appears at 508 K, whereas on cooling the intermediate phase forms at 503 K and persists down to at least 313 K. The PFM investigation was focused on the intermediate phase and involved measurements of both out-of-plane and in-plane electromechanical responses of the (001)-oriented crystal face. The PFM images revealed the presence of polarization patterns switchable by an applied electric field, which confirms the ferroelectric character of the intermediate phase. Importantly, two types of regular domain structures were found, which differ by the spatial orientation of domain walls. The reconstruction of polarization configurations in the observed domain structures showed that one of them is a purely ferroelectric 180° structure with domain walls orthogonal to the crystal surface and parallel to one of the ⟨111⟩ pseudocubic directions. Another one is a ferroelectric-ferroelastic domain structure with the 71° walls parallel to the {101} or {011} crystallographic planes. Remarkably, this domain structure shows correlated out-of-plane and in-plane polarization reorientations after the poling with the aid of the microscope tip. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/1.4962991 |