Design of a Compound Reconfigurable Terahertz Antenna Based on Graphene

In this paper, a terahertz dipole antenna with compound reconfigurability is designed, which possesses the capability of controlling frequency, radiation pattern, and polarization state. A capacitive load loop (CLL) made of graphene–metal composite material is applied around a pair of mutually ortho...

Full description

Saved in:
Bibliographic Details
Published inPlasmonics (Norwell, Mass.) Vol. 19; no. 2; pp. 621 - 629
Main Authors Jin, Zhao, Rong, Yu, Yu, JingDong, Wu, Fei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a terahertz dipole antenna with compound reconfigurability is designed, which possesses the capability of controlling frequency, radiation pattern, and polarization state. A capacitive load loop (CLL) made of graphene–metal composite material is applied around a pair of mutually orthogonal graphene-based dipole antennas. By controlling the bias voltage, the surface conductivity of graphene is adjusted, enabling compound reconfigurability. The graphene strips on the CLL provide a high degree of freedom for the radiation characteristics of the antenna. By adjusting the combination of chemical potentials of graphene, the operating frequency of the antenna can be reconfigured within the range of 1.40 to 1.84 THz. Moreover, it is possible to control the antenna to achieve directional radiation with four beams (0°, 90°, 180°, 270°) in the XOY plane at 1.75 THz, and ranging from 1.68 to 1.81 THz, it can be reconfigured to achieve controllable RHCL or LHCL.
ISSN:1557-1955
1557-1963
DOI:10.1007/s11468-023-02011-8