One-step electrodeposition of V-doped NiFe nanosheets for low-overpotential alkaline oxygen evolution
As a non-noble metal electrocatalyst for the oxygen evolution reaction (OER), the binary NiFe layer double hydroxide (LDH) is expected to replace Ru-based and Ir-based anode materials for water decomposition. To attain threshold current density, nevertheless, a somewhat significant overpotential is...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 52; no. 45; pp. 16963 - 16973 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As a non-noble metal electrocatalyst for the oxygen evolution reaction (OER), the binary NiFe layer double hydroxide (LDH) is expected to replace Ru-based and Ir-based anode materials for water decomposition. To attain threshold current density, nevertheless, a somewhat significant overpotential is still needed. In this work, layered double hydroxides of NiFe LDH are doped with V to form the terpolymer NiFeV LDH, which greatly increases the intrinsic activity of NiFe LDH and improves OER performance. This process is a straightforward and quick one-step electrodeposition process. Notably, NiFeV/NF has a low overpotential (218 mV at 10 mA cm
−2
) and faster kinetics (Tafel slope of 31 mV dec
−1
) as well as excellent durability and stability in 1 M KOH solution. In addition, the OER performance of the catalyst prepared in this work is better than that of a non-valuable metal catalyst that was recently reported. The V-doped NiFe LDH layered double hydroxides and the investigation of electrodeposition electrocatalytic methods in this work offer a fresh opportunity for the advancement of electrochemical technology.
This paper reports the construction of a V-doped NiFe nanosheet electrolytic water oxygen evolution catalyst (NiFeV/NF) by one-step electrodeposition. The catalyst has excellent reaction kinetics and amazing oxygen evolution performance. |
---|---|
Bibliography: | https://doi.org/10.1039/d3dt03066k Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d3dt03066k |