Improvement of Convergence to Steady State Solutions of Euler Equations with Weighted Compact Nonlinear Schemes

The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other s...

Full description

Saved in:
Bibliographic Details
Published inActa Mathematicae Applicatae Sinica Vol. 29; no. 3; pp. 449 - 464
Main Authors Zhang, Shu-hai, Deng, Xiao-gang, Mao, Mei-liang, Shu, Chi-Wang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.
Bibliography:The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.
weighted compact schemes; convergence to steady state solution; nonlinear weights
11-2041/O1
ISSN:0168-9673
1618-3932
DOI:10.1007/s10255-013-0230-6