On the formation of super-Jupiters: core accretion or gravitational instability?
The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmos...
Saved in:
Published in | Astrophysics and space science Vol. 369; no. 12; p. 122 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4
M
♃
. Our results consistently demonstrate that planets with masses above 4
M
♃
form in disks with at least as much metal content as those hosting planets with masses between 1 and 4
M
♃
, often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions. |
---|---|
AbstractList | The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4
$M_{\jupiter}$
M
♃
. Our results consistently demonstrate that planets with masses above 4
$M_{\jupiter}$
M
♃
form in disks with at least as much metal content as those hosting planets with masses between 1 and 4
$M_{\jupiter}$
M
♃
, often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions. The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4 M♃. Our results consistently demonstrate that planets with masses above 4 M♃ form in disks with at least as much metal content as those hosting planets with masses between 1 and 4 M♃, often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions. The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4 M ♃ . Our results consistently demonstrate that planets with masses above 4 M ♃ form in disks with at least as much metal content as those hosting planets with masses between 1 and 4 M ♃ , often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions. |
ArticleNumber | 122 |
Author | Nguyen, Max Adibekyan, Vardan |
Author_xml | – sequence: 1 givenname: Max surname: Nguyen fullname: Nguyen, Max email: MaxHungNguyen@gmail.com organization: Leland High School – sequence: 2 givenname: Vardan surname: Adibekyan fullname: Adibekyan, Vardan organization: Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto |
BookMark | eNp9kE1LAzEQhoMo2Fb_gKeA5-jkY7MbLyLFTwr1oNBbyKZJ3dJuapIV-u9du4I3T8PA87wzvGN03IbWIXRB4YoClNeJQgGKABMEBK8qwo7QiBYlI0rIxTEaAYAgUsDiFI1TWverkqocodd5i_OHwz7ErclNaHHwOHU7F8lLt2uyi-kG2xAdNtZGNxARr6L5avJBMBvctCmbutk0eX97hk682SR3_jsn6P3h_m36RGbzx-fp3YxYTkUm1nnpmbWi9LRQlbR1wTkU3pfSSW6Eq71nSinBGFfl0qglAwucFdwAWFnzCboccncxfHYuZb0OXey_Sbo_wIUUlaQ9xQbKxpBSdF7vYrM1ca8p6J_m9NCc7pvTh-Y06yU-SKmH25WLf9H_WN-PYnNN |
Cites_doi | 10.1093/mnras/stad3003 10.1051/0004-6361/202451981 10.1088/0004-6256/148/3/54 10.1051/0004-6361:20010648 10.3847/1538-4357/aca320 10.1051/0004-6361/201833361 10.1051/0004-6361/201321286 10.1051/0004-6361/202141588 10.1051/0004-6361/201731359 10.1086/381724 10.3390/geosciences9030105 10.3847/1538-3881/aae391 10.1051/0004-6361/201629272 10.1051/0004-6361/201219401 10.1006/icar.1996.0190 10.1051/0004-6361/201322631 10.21105/joss.03021 10.1051/0004-6361/201833827 10.1051/0004-6361/201117350 10.1051/0004-6361/201220167 10.1111/j.1745-3933.2009.00734.x 10.1088/0004-637X/773/2/168 10.1086/428383 10.1051/0004-6361/201219564 10.1126/science.276.5320.1836 10.1109/MCSE.2007.55 10.1051/0004-6361/201730761 10.1038/s41592-019-0686-2 10.3847/0004-637X/831/2/125 10.3847/1538-4357/aa961c 10.48550/arXiv.2203.09930 10.48550/arXiv.2406.05447 10.1051/0004-6361/201322551 10.1088/0004-637X/727/1/57 10.1051/0004-6361/202245427 10.1088/0004-637X/771/2/129 10.1051/0004-6361/202140445 10.1093/mnras/stad1573 10.1051/0004-6361/202452193 10.3847/0004-637X/828/1/46 10.48550/arXiv.2409.11965 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | C6C AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.1007/s10509-024-04388-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1572-946X |
ExternalDocumentID | 10_1007_s10509_024_04388_2 |
GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia grantid: UIDB/04434/2020 funderid: http://dx.doi.org/10.13039/501100001871 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 6TJ 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO E3Z EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW KZ1 LAK LK5 LLZTM M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 OVD P19 P62 P9T PF0 PKN PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNP RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WH7 WK8 XJT YLTOR Z45 Z7R Z7Y Z7Z Z8M Z8S Z8T ZMTXR ZY4 ~02 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TG 8FD ABRTQ H8D KL. L7M |
ID | FETCH-LOGICAL-c314t-cef6f2cc47f15986cb53305ff76e63a4ebff2999422397da9d20c03253a00c6b3 |
IEDL.DBID | C6C |
ISSN | 0004-640X |
IngestDate | Fri Jul 25 22:46:03 EDT 2025 Tue Jul 01 04:19:50 EDT 2025 Fri Feb 21 02:34:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Chemical abundances Exoplanet formation Planet hosting stars Methods: statistical |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-cef6f2cc47f15986cb53305ff76e63a4ebff2999422397da9d20c03253a00c6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s10509-024-04388-2 |
PQID | 3143464861 |
PQPubID | 105598 |
ParticipantIDs | proquest_journals_3143464861 crossref_primary_10_1007_s10509_024_04388_2 springer_journals_10_1007_s10509_024_04388_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Astronomy, Astrophysics and Space Science |
PublicationTitle | Astrophysics and space science |
PublicationTitleAbbrev | Astrophys Space Sci |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | E. Delgado Mena (4388_CR13) 2021; 655 M. Asplund (4388_CR9) 2021; 653 J. Maldonado (4388_CR23) 2019; 624 M. Deal (4388_CR12) 2018; 618 C.F. Manara (4388_CR24) 2023 4388_CR33 M. Narang (4388_CR29) 2018; 156 V.Z. Adibekyan (4388_CR6) 2013; 560 N.C. Santos (4388_CR35) 2013; 556 A.P. Boss (4388_CR11) 1997; 276 N.R. Hinkel (4388_CR19) 2014; 148 S. Mohanty (4388_CR27) 2013; 773 E. Fiorellino (4388_CR14) 2023; 944 J. Guzmán-Díaz (4388_CR18) 2023; 671 D.S. Spiegel (4388_CR41) 2011; 727 P. Virtanen (4388_CR42) 2020; 17 T. Prusti (4388_CR16) 2016; 595 M. Ansdell (4388_CR8) 2016; 828 G. Gonzalez (4388_CR17) 2009; 399 D.A. Fischer (4388_CR15) 2005; 622 M.L. Waskom (4388_CR43) 2021; 6 4388_CR40 V. Adibekyan (4388_CR2) 2024; 692 4388_CR22 J.B. Pollack (4388_CR31) 1996; 124 S. Seabold (4388_CR39) 2010 I. Pascucci (4388_CR30) 2016; 831 N.C. Santos (4388_CR34) 2001; 373 W. McKinney (4388_CR26) 2010 B. Ratcliffe (4388_CR32) 2023; 525 V.Z. Adibekyan (4388_CR3) 2012; 547 V.Z. Adibekyan (4388_CR5) 2012; 545 S. Ida (4388_CR21) 2004; 604 R. Matsukoba (4388_CR25) 2023; 526 N.C. Santos (4388_CR37) 2017; 603 V. Adibekyan (4388_CR1) 2019; 9 K.C. Schlaufman (4388_CR38) 2018; 853 T. Bensby (4388_CR10) 2014; 562 J.D. Hunter (4388_CR20) 2007; 9 N.C. Santos (4388_CR36) 2017; 608 C. Mordasini (4388_CR28) 2012; 541 V.Z. Adibekyan (4388_CR4) 2012; 543 S.M. Andrews (4388_CR7) 2013; 771 |
References_xml | – volume: 526 start-page: 3933 issue: 3 year: 2023 ident: 4388_CR25 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stad3003 – ident: 4388_CR22 doi: 10.1051/0004-6361/202451981 – volume: 148 issue: 3 year: 2014 ident: 4388_CR19 publication-title: Astron. J. doi: 10.1088/0004-6256/148/3/54 – volume: 373 start-page: 1019 year: 2001 ident: 4388_CR34 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20010648 – volume: 944 issue: 2 year: 2023 ident: 4388_CR14 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aca320 – volume: 618 year: 2018 ident: 4388_CR12 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201833361 – volume: 556 year: 2013 ident: 4388_CR35 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201321286 – volume: 655 year: 2021 ident: 4388_CR13 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202141588 – volume: 608 year: 2017 ident: 4388_CR36 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201731359 – volume: 604 start-page: 388 issue: 1 year: 2004 ident: 4388_CR21 publication-title: Astrophys. J. doi: 10.1086/381724 – start-page: 51 volume-title: Proceedings of the 9th Python in Science Conference year: 2010 ident: 4388_CR26 – volume: 9 issue: 3 year: 2019 ident: 4388_CR1 publication-title: Geosciences doi: 10.3390/geosciences9030105 – volume: 156 issue: 5 year: 2018 ident: 4388_CR29 publication-title: Astron. J. doi: 10.3847/1538-3881/aae391 – volume: 595 year: 2016 ident: 4388_CR16 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201629272 – volume: 545 year: 2012 ident: 4388_CR5 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201219401 – volume: 124 start-page: 62 issue: 1 year: 1996 ident: 4388_CR31 publication-title: Icarus doi: 10.1006/icar.1996.0190 – volume: 562 year: 2014 ident: 4388_CR10 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201322631 – volume: 6 issue: 60 year: 2021 ident: 4388_CR43 publication-title: J. Open Sour. Softw. doi: 10.21105/joss.03021 – volume: 624 year: 2019 ident: 4388_CR23 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201833827 – volume: 541 year: 2012 ident: 4388_CR28 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201117350 – volume: 547 year: 2012 ident: 4388_CR3 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201220167 – volume: 399 start-page: L103 issue: 1 year: 2009 ident: 4388_CR17 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1745-3933.2009.00734.x – volume: 773 issue: 2 year: 2013 ident: 4388_CR27 publication-title: Astrophys. J. doi: 10.1088/0004-637X/773/2/168 – volume: 622 start-page: 1102 issue: 2 year: 2005 ident: 4388_CR15 publication-title: Astrophys. J. doi: 10.1086/428383 – volume: 543 year: 2012 ident: 4388_CR4 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201219564 – volume: 276 start-page: 1836 year: 1997 ident: 4388_CR11 publication-title: Science doi: 10.1126/science.276.5320.1836 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 4388_CR20 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 603 year: 2017 ident: 4388_CR37 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201730761 – volume: 17 start-page: 261 year: 2020 ident: 4388_CR42 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 831 issue: 2 year: 2016 ident: 4388_CR30 publication-title: Astrophys. J. doi: 10.3847/0004-637X/831/2/125 – volume: 853 issue: 1 year: 2018 ident: 4388_CR38 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aa961c – volume-title: 9th Python in Science Conference year: 2010 ident: 4388_CR39 – start-page: 539 volume-title: Protostars and Planets VII year: 2023 ident: 4388_CR24 doi: 10.48550/arXiv.2203.09930 – ident: 4388_CR33 doi: 10.48550/arXiv.2406.05447 – volume: 560 year: 2013 ident: 4388_CR6 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201322551 – volume: 727 issue: 1 year: 2011 ident: 4388_CR41 publication-title: Astrophys. J. doi: 10.1088/0004-637X/727/1/57 – volume: 671 year: 2023 ident: 4388_CR18 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202245427 – volume: 771 issue: 2 year: 2013 ident: 4388_CR7 publication-title: Astrophys. J. doi: 10.1088/0004-637X/771/2/129 – volume: 653 year: 2021 ident: 4388_CR9 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202140445 – volume: 525 start-page: 2208 issue: 2 year: 2023 ident: 4388_CR32 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stad1573 – volume: 692 year: 2024 ident: 4388_CR2 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202452193 – volume: 828 issue: 1 year: 2016 ident: 4388_CR8 publication-title: Astrophys. J. doi: 10.3847/0004-637X/828/1/46 – ident: 4388_CR40 doi: 10.48550/arXiv.2409.11965 |
SSID | ssj0009697 |
Score | 2.3856142 |
Snippet | The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 122 |
SubjectTerms | Accretion Accretion disks Astrobiology Astronomy Astrophysics and Astroparticles Building materials Cosmology Extrasolar planets Gas giant planets Gravitational instability Jupiter Jupiter atmosphere Metal content Metallicity Observations and Techniques Physics Physics and Astronomy Planet formation Planetary composition Planetary mass Planets Protoplanetary disks Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Stellar atmospheres Stellar mass Stellar mass accretion |
Title | On the formation of super-Jupiters: core accretion or gravitational instability? |
URI | https://link.springer.com/article/10.1007/s10509-024-04388-2 https://www.proquest.com/docview/3143464861 |
Volume | 369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFH7ohuBFdCqbzpGDeNFAm6Tp6kXK2BwTdQcH81S6NAEPdmPdDvv35rWdxaEHLyXQ9LW8l_I-kvd9D-A64EGsjUook4pTwbWmXZkwqh27OIxvpMh5a88vcjgRo6k3LWVykAuzc36PFDcPt-8ZlktwjOo-1D2X-9imoSd7lcBu0UgFMQqVwpmWBJnfbfxMQhWy3DkMzXPM4BiOSnBIwiKaJ7Cn0wY0wwy3q-efG3JD8nGxG5E14GBcjE5h_JoSC-XINxeRzA3J1gu9pKP1AmnG2T1BxUoSK4XERZyxJNh8qBTptu_9QKiYF8tuHs5gMui_9Ya0bJZAFXfFiiptpGFKCd-4qLmuZlg36hnjSy15LPTMGJt6AmHxQOAncZAwRzmceTx2HCVn_Bxq6TzVTSBd19rQAXftA4LLJBCOYSZhRvkW7wSmBbdb70WLQhMjqtSP0deR9XWU-zpiLWhvHRyV_0cW2U_mQoqudFtwt3V6dftvaxf_m34JhwzjnteftKG2Wq71lUURq1kH6uHj-1O_ky8je52w8AscH79x |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH5RjNGLUdSAovZgvGiTre26zYshRoIIyAESbsvo2sSDgzA48O9tu82p0YO3Juvelq9ve1_a970HcB3SMJZKJJhwQTGjUuKAJwRLRzuH8hVnVrc2GPLuhPWm3rQQhWVltnt5JGn_1F_Ebp7ZyCcmcYKa9d2GHU0GAuPLE9KuSu3mLVUMW8GcOdNCKvO7je_hqOKYP45FbbTpHMJBQRNRO1_XI9iSaR0a7cxsXM_fN-gG2XG-L5HVYXeUj45h9JoiTerQpyoRzRXK1gu5xL31wgiOs3tkaleiWAgjYTQzlsi0ISrKdevnvhnSaNNmNw8nMOk8jR-7uGibgAV12QoLqbgiQjBfuab6upiZDFJPKZ9LTmMmZ0rpIBQyzQxCP4nDhDjCocSjseMIPqOnUEvnqWwAClxtQ4bU1TcwypOQOYqohCjha-YTqibcluhFi7w6RlTVQTZYRxrryGIdkSa0SoCj4kvJIv3KlHEWcLcJdyXo1eW_rZ39b_oV7HXHg37Ufx6-nMM-MT5gs1JaUFst1_JCc4vV7NK60gedUsQL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH5RjMaLUdSAovZgvGjD1paOeTEEJYiKHCThtoyuTTw4FgYH_r192xA0evDWZO3b8vqW97V931eAS5_7oTYqokwqTgXXmjZlxKh2bHAYz0iR8dZe-rI7FL1RY7TG4s-q3ZdHkjmnAVWa4lk9iUx9jfjWwE19hkUUHOd6E7bsSsXF5Vdbtleyu_n1KohcqBTOqKDN_G7je2pa4c0fR6RZ5unsw14BGUkrn-MD2NBxGSqtFDexJx8LckWydr5HkZZhe5C3DmHwGhML8MgXQ5FMDEnniZ7S3jxB8nF6S1DHkoRKIZ0Re0wJXklUSHfb974jgMxKaBd3RzDsPLy1u7S4QoEq7ooZVdpIw5QSnnFRiV2NsZq0YYwnteSh0GNjbELyhUUJvheFfsQc5XDW4KHjKDnmx1CKJ7GuAGm61ob2uWsHCC4jXziGmYgZ5VkU5JsqXC-9FyS5Ukaw0kRGXwfW10Hm64BVobZ0cFD8NWlgP5kLKZrSrcLN0umrx39bO_lf9wvYGdx3gufH_tMp7DIMgaxApQal2XSuzyzMmI3Ps0j6BCfdyDE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+formation+of+super-Jupiters%3A+core+accretion+or+gravitational+instability%3F&rft.jtitle=Astrophysics+and+space+science&rft.au=Nguyen%2C+Max&rft.au=Adibekyan%2C+Vardan&rft.date=2024-12-01&rft.issn=0004-640X&rft.eissn=1572-946X&rft.volume=369&rft.issue=12&rft_id=info:doi/10.1007%2Fs10509-024-04388-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10509_024_04388_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-640X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-640X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-640X&client=summon |