On the formation of super-Jupiters: core accretion or gravitational instability?

The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmos...

Full description

Saved in:
Bibliographic Details
Published inAstrophysics and space science Vol. 369; no. 12; p. 122
Main Authors Nguyen, Max, Adibekyan, Vardan
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4 M ♃ . Our results consistently demonstrate that planets with masses above 4 M ♃ form in disks with at least as much metal content as those hosting planets with masses between 1 and 4 M ♃ , often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions.
AbstractList The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4 $M_{\jupiter}$ M ♃ . Our results consistently demonstrate that planets with masses above 4 $M_{\jupiter}$ M ♃ form in disks with at least as much metal content as those hosting planets with masses between 1 and 4 $M_{\jupiter}$ M ♃ , often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions.
The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4 M♃. Our results consistently demonstrate that planets with masses above 4 M♃ form in disks with at least as much metal content as those hosting planets with masses between 1 and 4 M♃, often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions.
The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive planets remains a subject of debate, as their formation via the Core Accretion model requires super-solar metallicities. Assuming stellar atmospheric abundances reflect the composition of protoplanetary disks, and that disk mass scales linearly with stellar mass, we calculated the total amount of metals in planet-building materials that could contribute to the formation of massive planets. In this work, we studied a sample of 172 Jupiter-mass planets and 93 planets with masses exceeding 4 M ♃ . Our results consistently demonstrate that planets with masses above 4 M ♃ form in disks with at least as much metal content as those hosting planets with masses between 1 and 4 M ♃ , often with slightly higher metallicity, typically exceeding that of the proto-solar disk. We interpret this as strong evidence that the formation of very massive Jupiters is feasible through Core Accretion and encourage planet formation modelers to test our observational conclusions.
ArticleNumber 122
Author Nguyen, Max
Adibekyan, Vardan
Author_xml – sequence: 1
  givenname: Max
  surname: Nguyen
  fullname: Nguyen, Max
  email: MaxHungNguyen@gmail.com
  organization: Leland High School
– sequence: 2
  givenname: Vardan
  surname: Adibekyan
  fullname: Adibekyan, Vardan
  organization: Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto
BookMark eNp9kE1LAzEQhoMo2Fb_gKeA5-jkY7MbLyLFTwr1oNBbyKZJ3dJuapIV-u9du4I3T8PA87wzvGN03IbWIXRB4YoClNeJQgGKABMEBK8qwo7QiBYlI0rIxTEaAYAgUsDiFI1TWverkqocodd5i_OHwz7ErclNaHHwOHU7F8lLt2uyi-kG2xAdNtZGNxARr6L5avJBMBvctCmbutk0eX97hk682SR3_jsn6P3h_m36RGbzx-fp3YxYTkUm1nnpmbWi9LRQlbR1wTkU3pfSSW6Eq71nSinBGFfl0qglAwucFdwAWFnzCboccncxfHYuZb0OXey_Sbo_wIUUlaQ9xQbKxpBSdF7vYrM1ca8p6J_m9NCc7pvTh-Y06yU-SKmH25WLf9H_WN-PYnNN
Cites_doi 10.1093/mnras/stad3003
10.1051/0004-6361/202451981
10.1088/0004-6256/148/3/54
10.1051/0004-6361:20010648
10.3847/1538-4357/aca320
10.1051/0004-6361/201833361
10.1051/0004-6361/201321286
10.1051/0004-6361/202141588
10.1051/0004-6361/201731359
10.1086/381724
10.3390/geosciences9030105
10.3847/1538-3881/aae391
10.1051/0004-6361/201629272
10.1051/0004-6361/201219401
10.1006/icar.1996.0190
10.1051/0004-6361/201322631
10.21105/joss.03021
10.1051/0004-6361/201833827
10.1051/0004-6361/201117350
10.1051/0004-6361/201220167
10.1111/j.1745-3933.2009.00734.x
10.1088/0004-637X/773/2/168
10.1086/428383
10.1051/0004-6361/201219564
10.1126/science.276.5320.1836
10.1109/MCSE.2007.55
10.1051/0004-6361/201730761
10.1038/s41592-019-0686-2
10.3847/0004-637X/831/2/125
10.3847/1538-4357/aa961c
10.48550/arXiv.2203.09930
10.48550/arXiv.2406.05447
10.1051/0004-6361/201322551
10.1088/0004-637X/727/1/57
10.1051/0004-6361/202245427
10.1088/0004-637X/771/2/129
10.1051/0004-6361/202140445
10.1093/mnras/stad1573
10.1051/0004-6361/202452193
10.3847/0004-637X/828/1/46
10.48550/arXiv.2409.11965
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.1007/s10509-024-04388-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1572-946X
ExternalDocumentID 10_1007_s10509_024_04388_2
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  grantid: UIDB/04434/2020
  funderid: http://dx.doi.org/10.13039/501100001871
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
6TJ
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
KZ1
LAK
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
OVD
P19
P62
P9T
PF0
PKN
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNP
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WH7
WK8
XJT
YLTOR
Z45
Z7R
Z7Y
Z7Z
Z8M
Z8S
Z8T
ZMTXR
ZY4
~02
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
8FD
ABRTQ
H8D
KL.
L7M
ID FETCH-LOGICAL-c314t-cef6f2cc47f15986cb53305ff76e63a4ebff2999422397da9d20c03253a00c6b3
IEDL.DBID C6C
ISSN 0004-640X
IngestDate Fri Jul 25 22:46:03 EDT 2025
Tue Jul 01 04:19:50 EDT 2025
Fri Feb 21 02:34:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Chemical abundances
Exoplanet formation
Planet hosting stars
Methods: statistical
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-cef6f2cc47f15986cb53305ff76e63a4ebff2999422397da9d20c03253a00c6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s10509-024-04388-2
PQID 3143464861
PQPubID 105598
ParticipantIDs proquest_journals_3143464861
crossref_primary_10_1007_s10509_024_04388_2
springer_journals_10_1007_s10509_024_04388_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Astronomy, Astrophysics and Space Science
PublicationTitle Astrophysics and space science
PublicationTitleAbbrev Astrophys Space Sci
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References E. Delgado Mena (4388_CR13) 2021; 655
M. Asplund (4388_CR9) 2021; 653
J. Maldonado (4388_CR23) 2019; 624
M. Deal (4388_CR12) 2018; 618
C.F. Manara (4388_CR24) 2023
4388_CR33
M. Narang (4388_CR29) 2018; 156
V.Z. Adibekyan (4388_CR6) 2013; 560
N.C. Santos (4388_CR35) 2013; 556
A.P. Boss (4388_CR11) 1997; 276
N.R. Hinkel (4388_CR19) 2014; 148
S. Mohanty (4388_CR27) 2013; 773
E. Fiorellino (4388_CR14) 2023; 944
J. Guzmán-Díaz (4388_CR18) 2023; 671
D.S. Spiegel (4388_CR41) 2011; 727
P. Virtanen (4388_CR42) 2020; 17
T. Prusti (4388_CR16) 2016; 595
M. Ansdell (4388_CR8) 2016; 828
G. Gonzalez (4388_CR17) 2009; 399
D.A. Fischer (4388_CR15) 2005; 622
M.L. Waskom (4388_CR43) 2021; 6
4388_CR40
V. Adibekyan (4388_CR2) 2024; 692
4388_CR22
J.B. Pollack (4388_CR31) 1996; 124
S. Seabold (4388_CR39) 2010
I. Pascucci (4388_CR30) 2016; 831
N.C. Santos (4388_CR34) 2001; 373
W. McKinney (4388_CR26) 2010
B. Ratcliffe (4388_CR32) 2023; 525
V.Z. Adibekyan (4388_CR3) 2012; 547
V.Z. Adibekyan (4388_CR5) 2012; 545
S. Ida (4388_CR21) 2004; 604
R. Matsukoba (4388_CR25) 2023; 526
N.C. Santos (4388_CR37) 2017; 603
V. Adibekyan (4388_CR1) 2019; 9
K.C. Schlaufman (4388_CR38) 2018; 853
T. Bensby (4388_CR10) 2014; 562
J.D. Hunter (4388_CR20) 2007; 9
N.C. Santos (4388_CR36) 2017; 608
C. Mordasini (4388_CR28) 2012; 541
V.Z. Adibekyan (4388_CR4) 2012; 543
S.M. Andrews (4388_CR7) 2013; 771
References_xml – volume: 526
  start-page: 3933
  issue: 3
  year: 2023
  ident: 4388_CR25
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stad3003
– ident: 4388_CR22
  doi: 10.1051/0004-6361/202451981
– volume: 148
  issue: 3
  year: 2014
  ident: 4388_CR19
  publication-title: Astron. J.
  doi: 10.1088/0004-6256/148/3/54
– volume: 373
  start-page: 1019
  year: 2001
  ident: 4388_CR34
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20010648
– volume: 944
  issue: 2
  year: 2023
  ident: 4388_CR14
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aca320
– volume: 618
  year: 2018
  ident: 4388_CR12
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201833361
– volume: 556
  year: 2013
  ident: 4388_CR35
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201321286
– volume: 655
  year: 2021
  ident: 4388_CR13
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202141588
– volume: 608
  year: 2017
  ident: 4388_CR36
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201731359
– volume: 604
  start-page: 388
  issue: 1
  year: 2004
  ident: 4388_CR21
  publication-title: Astrophys. J.
  doi: 10.1086/381724
– start-page: 51
  volume-title: Proceedings of the 9th Python in Science Conference
  year: 2010
  ident: 4388_CR26
– volume: 9
  issue: 3
  year: 2019
  ident: 4388_CR1
  publication-title: Geosciences
  doi: 10.3390/geosciences9030105
– volume: 156
  issue: 5
  year: 2018
  ident: 4388_CR29
  publication-title: Astron. J.
  doi: 10.3847/1538-3881/aae391
– volume: 595
  year: 2016
  ident: 4388_CR16
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201629272
– volume: 545
  year: 2012
  ident: 4388_CR5
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201219401
– volume: 124
  start-page: 62
  issue: 1
  year: 1996
  ident: 4388_CR31
  publication-title: Icarus
  doi: 10.1006/icar.1996.0190
– volume: 562
  year: 2014
  ident: 4388_CR10
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201322631
– volume: 6
  issue: 60
  year: 2021
  ident: 4388_CR43
  publication-title: J. Open Sour. Softw.
  doi: 10.21105/joss.03021
– volume: 624
  year: 2019
  ident: 4388_CR23
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201833827
– volume: 541
  year: 2012
  ident: 4388_CR28
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201117350
– volume: 547
  year: 2012
  ident: 4388_CR3
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201220167
– volume: 399
  start-page: L103
  issue: 1
  year: 2009
  ident: 4388_CR17
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1745-3933.2009.00734.x
– volume: 773
  issue: 2
  year: 2013
  ident: 4388_CR27
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/773/2/168
– volume: 622
  start-page: 1102
  issue: 2
  year: 2005
  ident: 4388_CR15
  publication-title: Astrophys. J.
  doi: 10.1086/428383
– volume: 543
  year: 2012
  ident: 4388_CR4
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201219564
– volume: 276
  start-page: 1836
  year: 1997
  ident: 4388_CR11
  publication-title: Science
  doi: 10.1126/science.276.5320.1836
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 4388_CR20
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 603
  year: 2017
  ident: 4388_CR37
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201730761
– volume: 17
  start-page: 261
  year: 2020
  ident: 4388_CR42
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 831
  issue: 2
  year: 2016
  ident: 4388_CR30
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/831/2/125
– volume: 853
  issue: 1
  year: 2018
  ident: 4388_CR38
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aa961c
– volume-title: 9th Python in Science Conference
  year: 2010
  ident: 4388_CR39
– start-page: 539
  volume-title: Protostars and Planets VII
  year: 2023
  ident: 4388_CR24
  doi: 10.48550/arXiv.2203.09930
– ident: 4388_CR33
  doi: 10.48550/arXiv.2406.05447
– volume: 560
  year: 2013
  ident: 4388_CR6
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201322551
– volume: 727
  issue: 1
  year: 2011
  ident: 4388_CR41
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/727/1/57
– volume: 671
  year: 2023
  ident: 4388_CR18
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202245427
– volume: 771
  issue: 2
  year: 2013
  ident: 4388_CR7
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/771/2/129
– volume: 653
  year: 2021
  ident: 4388_CR9
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202140445
– volume: 525
  start-page: 2208
  issue: 2
  year: 2023
  ident: 4388_CR32
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stad1573
– volume: 692
  year: 2024
  ident: 4388_CR2
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202452193
– volume: 828
  issue: 1
  year: 2016
  ident: 4388_CR8
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/828/1/46
– ident: 4388_CR40
  doi: 10.48550/arXiv.2409.11965
SSID ssj0009697
Score 2.3856142
Snippet The Core Accretion model is widely accepted as the primary mechanism for forming planets up to a few Jupiter masses. However, the formation of super-massive...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 122
SubjectTerms Accretion
Accretion disks
Astrobiology
Astronomy
Astrophysics and Astroparticles
Building materials
Cosmology
Extrasolar planets
Gas giant planets
Gravitational instability
Jupiter
Jupiter atmosphere
Metal content
Metallicity
Observations and Techniques
Physics
Physics and Astronomy
Planet formation
Planetary composition
Planetary mass
Planets
Protoplanetary disks
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Stellar atmospheres
Stellar mass
Stellar mass accretion
Title On the formation of super-Jupiters: core accretion or gravitational instability?
URI https://link.springer.com/article/10.1007/s10509-024-04388-2
https://www.proquest.com/docview/3143464861
Volume 369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFH7ohuBFdCqbzpGDeNFAm6Tp6kXK2BwTdQcH81S6NAEPdmPdDvv35rWdxaEHLyXQ9LW8l_I-kvd9D-A64EGsjUook4pTwbWmXZkwqh27OIxvpMh5a88vcjgRo6k3LWVykAuzc36PFDcPt-8ZlktwjOo-1D2X-9imoSd7lcBu0UgFMQqVwpmWBJnfbfxMQhWy3DkMzXPM4BiOSnBIwiKaJ7Cn0wY0wwy3q-efG3JD8nGxG5E14GBcjE5h_JoSC-XINxeRzA3J1gu9pKP1AmnG2T1BxUoSK4XERZyxJNh8qBTptu_9QKiYF8tuHs5gMui_9Ya0bJZAFXfFiiptpGFKCd-4qLmuZlg36hnjSy15LPTMGJt6AmHxQOAncZAwRzmceTx2HCVn_Bxq6TzVTSBd19rQAXftA4LLJBCOYSZhRvkW7wSmBbdb70WLQhMjqtSP0deR9XWU-zpiLWhvHRyV_0cW2U_mQoqudFtwt3V6dftvaxf_m34JhwzjnteftKG2Wq71lUURq1kH6uHj-1O_ky8je52w8AscH79x
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH5RjNGLUdSAovZgvGiTre26zYshRoIIyAESbsvo2sSDgzA48O9tu82p0YO3Juvelq9ve1_a970HcB3SMJZKJJhwQTGjUuKAJwRLRzuH8hVnVrc2GPLuhPWm3rQQhWVltnt5JGn_1F_Ebp7ZyCcmcYKa9d2GHU0GAuPLE9KuSu3mLVUMW8GcOdNCKvO7je_hqOKYP45FbbTpHMJBQRNRO1_XI9iSaR0a7cxsXM_fN-gG2XG-L5HVYXeUj45h9JoiTerQpyoRzRXK1gu5xL31wgiOs3tkaleiWAgjYTQzlsi0ISrKdevnvhnSaNNmNw8nMOk8jR-7uGibgAV12QoLqbgiQjBfuab6upiZDFJPKZ9LTmMmZ0rpIBQyzQxCP4nDhDjCocSjseMIPqOnUEvnqWwAClxtQ4bU1TcwypOQOYqohCjha-YTqibcluhFi7w6RlTVQTZYRxrryGIdkSa0SoCj4kvJIv3KlHEWcLcJdyXo1eW_rZ39b_oV7HXHg37Ufx6-nMM-MT5gs1JaUFst1_JCc4vV7NK60gedUsQL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH5RjMaLUdSAovZgvGjD1paOeTEEJYiKHCThtoyuTTw4FgYH_r192xA0evDWZO3b8vqW97V931eAS5_7oTYqokwqTgXXmjZlxKh2bHAYz0iR8dZe-rI7FL1RY7TG4s-q3ZdHkjmnAVWa4lk9iUx9jfjWwE19hkUUHOd6E7bsSsXF5Vdbtleyu_n1KohcqBTOqKDN_G7je2pa4c0fR6RZ5unsw14BGUkrn-MD2NBxGSqtFDexJx8LckWydr5HkZZhe5C3DmHwGhML8MgXQ5FMDEnniZ7S3jxB8nF6S1DHkoRKIZ0Re0wJXklUSHfb974jgMxKaBd3RzDsPLy1u7S4QoEq7ooZVdpIw5QSnnFRiV2NsZq0YYwnteSh0GNjbELyhUUJvheFfsQc5XDW4KHjKDnmx1CKJ7GuAGm61ob2uWsHCC4jXziGmYgZ5VkU5JsqXC-9FyS5Ukaw0kRGXwfW10Hm64BVobZ0cFD8NWlgP5kLKZrSrcLN0umrx39bO_lf9wvYGdx3gufH_tMp7DIMgaxApQal2XSuzyzMmI3Ps0j6BCfdyDE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+formation+of+super-Jupiters%3A+core+accretion+or+gravitational+instability%3F&rft.jtitle=Astrophysics+and+space+science&rft.au=Nguyen%2C+Max&rft.au=Adibekyan%2C+Vardan&rft.date=2024-12-01&rft.issn=0004-640X&rft.eissn=1572-946X&rft.volume=369&rft.issue=12&rft_id=info:doi/10.1007%2Fs10509-024-04388-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10509_024_04388_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-640X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-640X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-640X&client=summon