Selecting intervals to optimize the design of observational studies subject to fine balance constraints
Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. I...
Saved in:
Published in | Journal of combinatorial optimization Vol. 47; no. 3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. In the second phase, we find the optimal matching subject to fine balance constraints with respect to the new covariate we obtained in the first phase. We show that the resulting optimization problem is NP-hard. However, it admits an FPT algorithm with respect to a natural parameter. This FPT algorithm also translates into a polynomial time algorithm for the most natural special cases of the problem. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-024-01116-y |