Analysis and Application of Variable Conductance Heat Pipe Air Preheater

The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with same or different heat transfer surface area in a parallel or counter flow mode. By...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal science Vol. 20; no. 3; pp. 248 - 253
Main Authors Shi, Chengming, Wang, Yang, Liao, Quan, Yang, Ying
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science Press 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with same or different heat transfer surface area in a parallel or counter flow mode. By using the temperature transfer matrix, the outlet fluid temperatures could be easily calculated for a given air preheater and inlet fluid temperatures. The active length of condenser in a variable conductance heat pipe is determined according to the flat interface model. With the same initial conditions, the comparisons between variable conductance heat-pipe air preheater and regular heat pipe air preheater has been analyzed and tested in terms of heat pipe wall temperature, heat transfer surface area and outlet fluid temperatures. Based on the real industrial applications, it has been confirmed that the variable conductance heat pipe air preheater has excellent performance of anti-corrosion and anti-ash-deposition especially at the variable working condition and the sulfur coal (5%-6% mass fraction of sulfur) condition.
Bibliography:The heat transfer analysis of variable conductance heat pipe air preheater was carried out. The temperature trans-fer matrix was obtained for the air preheater that comprises several discrete heat transfer units with same or different heat transfer surface area in a parallel or counter flow mode. By using the temperature transfer matrix, the outlet fluid temperatures could be easily calculated for a given air preheater and inlet fluid temperatures. The active length of condenser in a variable conductance heat pipe is determined according to the flat interface model. With the same initial conditions, the comparisons between variable conductance heat-pipe air preheater and regular heat pipe air preheater has been analyzed and tested in terms of heat pipe wall temperature, heat transfer surface area and outlet fluid temperatures. Based on the real industrial applications, it has been confirmed that the variable conductance heat pipe air preheater has excellent performance of anti-corrosion and anti-ash-deposition especially at the variable working condition and the sulfur coal (5%-6% mass fraction of sulfur) condition.
11-2853/O4
variable conductance, heat pipe, air preheater, anti-corrosion, anti-ash deposition
ISSN:1003-2169
1993-033X
DOI:10.1007/s11630-011-0466-5