Gradient dynamics approach to reactive thin-film hydrodynamics

Wetting and dewetting dynamics of simple and complex liquids is described by kinetic equations in gradient dynamics form that incorporates the various coupled dissipative processes in a fully thermodynamically consistent manner. After briefly reviewing this, we also review how chemical reactions can...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering mathematics Vol. 149; no. 1
Main Authors Voss, Florian, Thiele, Uwe
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wetting and dewetting dynamics of simple and complex liquids is described by kinetic equations in gradient dynamics form that incorporates the various coupled dissipative processes in a fully thermodynamically consistent manner. After briefly reviewing this, we also review how chemical reactions can be captured by a related gradient dynamics description, assuming detailed balanced mass action type kinetics. Then, we bring both aspects together and discuss mesoscopic reactive thin-film hydrodynamics illustrated by two examples, namely, models for reactive wetting and reactive surfactants. These models can describe the approach to equilibrium but may also be employed to study out-of-equilibrium chemo-mechanical dynamics. In the latter case, one breaks the gradient dynamics form by chemostatting to obtain active systems. In this way, for reactive wetting we recover running drops that are driven by chemically sustained wettability gradients and for drops covered by autocatalytic reactive surfactants we find complex forms of self-propulsion and self-excited oscillations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-024-10402-x