A self-adaptive stochastic resonance system design and study in chaotic interference

The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signa...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 12; pp. 38 - 42
Main Author 鲁康 王辅忠 张光璐 付卫红
Format Journal Article
LanguageEnglish
Published 01.12.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/12/120202

Cover

More Information
Summary:The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.
Bibliography:The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.
chaotic interference self-adaptive genetic algorithm optimal SR
Lu Kang, Wang Fu-Zhong, Zhang Guang-Lu, Fu Wei-Hong (College of Science, Tianjin Polytechnic University, Tianjin 300387, China )
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/12/120202