Charging dynamics of a polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results

We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on t...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 12; pp. 487 - 493
Main Author 曹猛 王芳 刘婧 张海波
Format Journal Article
LanguageEnglish
Published 01.12.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of the electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.
Bibliography:electron irradiation, charging dynamics, electron scattering, charge transport, polymer
We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of the electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.
Cao Meng, Wang Fang, Liu Jing, and Zhang Hai-Bo Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/12/127901