Amyloid aggregation and secondary structure changes of liver cystatin: Acidic denaturation and TFE induced studies

A cysteine proteinase inhibitor has been purified by affinity chromatography from the liver of buffalo. Liver cystatin is subjected to incubation at low pH with co-solvent TFE, where we have studied the effect on the conformation, activity and tendency to form aggregates or fibrils. ANS fluorescence...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. 40; no. 23; pp. 12506 - 12515
Main Authors Mir, Faisal Mustafa, Bano, Bilqees
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A cysteine proteinase inhibitor has been purified by affinity chromatography from the liver of buffalo. Liver cystatin is subjected to incubation at low pH with co-solvent TFE, where we have studied the effect on the conformation, activity and tendency to form aggregates or fibrils. ANS fluorescence was used to study conformational changes. The fibril formation and aggregation was studied using ThT assay, CD, FTIR and fluorescence spectroscopy. At pH 3.0 there was no fibril formation though aggregates were formed but in presence of TFE fibrils appeared. At pH 2.0 and 1.0, TFE induced rapid fibril formation compared to only acid induced state as assessed by Thioflavin T (ThT) fluorescence.TFE stabilized each of the three acid induced intermediates at predenaturational concentrations (20%) and accelerated fibril formation. Solvent conditions had a profound effect on the tendency of liver cystatin to produce fibrils and aggregation. Communicated by Ramaswamy H. Sarma
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-1102
1538-0254
DOI:10.1080/07391102.2021.1971565