Effects of structural defects on optical properties of InxGa1−xN layers and quantum wells
This review concentrates on the microstructure of InxGa1−xN layers and quantum wells (QWs) in relation to their optical properties. The microstructure of InxGa1−xN, with a constant In(x) concentration, shifts with layer thickness. Only layers below 100 nm for x = 0.1 are nearly defect-free. A photol...
Saved in:
Published in | Journal of applied physics Vol. 135; no. 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
07.03.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | This review concentrates on the microstructure of InxGa1−xN layers and quantum wells (QWs) in relation to their optical properties. The microstructure of InxGa1−xN, with a constant In(x) concentration, shifts with layer thickness. Only layers below 100 nm for x = 0.1 are nearly defect-free. A photoluminescence peak is observed at 405 nm, in line with ∼10% In, suggesting band-edge luminescence. Layers with greater thickness and In content present a corrugated surface with numerous structural defects, including V-defects, causing redshifts and multi-peaks in photoluminescence up to 490 nm. These defects, resembling those in GaN, lead to a corrugated sample surface. Atomic force microscopy shows a 3.7-fold larger corrugation in samples with 20 QWs compared to those with 5 QWs measured on 2 × 2 μm2 areas. Like in GaN, dual growth on different crystallographic planes results in varied QW thicknesses, influencing optical traits of devices made from InxGa1−xN layers. The purpose of this review and the chosen subject is to highlight the significant contribution of Wladek Walukiewicz and his group to the current research on the properties of InxGa1−xN, which are crucial alloys in the field of optoelectronics. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0185713 |