Investigation on oxidation behaviors of Ti-Si-N coating at high temperature
Purpose Ti-Si-N coating with nanocomposite structure is a promising protective coating for cutting tools which will be subject to high temperature oxidation during service. This study aims to investigate the thermal stability of Ti-Si-N coatings and lays the foundation for its application in high sp...
Saved in:
Published in | Anti-corrosion methods and materials Vol. 65; no. 2; pp. 125 - 130 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bradford
Emerald Publishing Limited
23.03.2018
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
Ti-Si-N coating with nanocomposite structure is a promising protective coating for cutting tools which will be subject to high temperature oxidation during service. This study aims to investigate the thermal stability of Ti-Si-N coatings and lays the foundation for its application in high speed dry cutting.
Design/methodology/approach
Nanocomposite Ti-Si-N coating was deposited on stainless substrate and silicon wafer (100) by Ti90Si10 alloy target by using cathodic arc ion plating. The microstructure of Ti-Si-N coating had been detected by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).
Findings
The results suggested that the coating was TiN nanocrystals with a diameter of 6.3 nm surrounded by amorphous Si3N4. The oxidation test was conducted under 550, 650, 750, 800, 850, 900 and 950°C for 2 h. The structure evolution was observed by Scanning electron microscope (SEM), energy dispersive spectrum (EDS), XRD and XPS. The results indicated that rutile has been formed at 650°C, while Si3N4 began to oxidized at 800°C. The grain size of TiN increased from 6.3 to 13 nm as the samples oxidized from 550 to 800. Micro-crack also formed in samples oxidized over 900°C.
Originality/value
Ti-Si-N coating, in this study, was deposited by cathodic arc ion plating using alloy target at high-bias voltage. The oxidation temperature ranged from 500 to 950°C with TiN coating as reference. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-5599 1758-4221 |
DOI: | 10.1108/ACMM-10-2015-1586 |