Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change
Cell shape changes require the coordination of actin and microtubule cytoskeletons. The molecular mechanisms by which such coordination is achieved remain obscure, particularly in the context of epithelial cells within developing vertebrate embryos. We have identified a novel role for the actin-bind...
Saved in:
Published in | Development (Cambridge) Vol. 134; no. 7; pp. 1431 - 1441 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.04.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cell shape changes require the coordination of actin and microtubule cytoskeletons. The molecular mechanisms by which such coordination is achieved remain obscure, particularly in the context of epithelial cells within developing vertebrate embryos. We have identified a novel role for the actin-binding protein Shroom3 as a regulator of the microtubule cytoskeleton during epithelial morphogenesis. We show that Shroom3 is sufficient and also necessary to induce a redistribution of the microtubule regulator gamma-tubulin. Moreover, this change in gamma-tubulin distribution underlies the assembly of aligned arrays of microtubules that drive apicobasal cell elongation. Finally, experiments with the related protein, Shroom1, demonstrate that gamma-tubulin regulation is a conserved feature of this protein family. Together, the data demonstrate that Shroom family proteins govern epithelial cell behaviors by coordinating the assembly of both microtubule and actin cytoskeletons. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0950-1991 1477-9129 |
DOI: | 10.1242/dev.02828 |