Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects

An analytical model for surrounding gate metal-oxide-semiconductor field effect transistors (MOS- FETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poisson and Schrodinger equations. This model is developed to provide an analyti...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 34; no. 11; pp. 25 - 30
Main Authors Vimala, P., Balamurugan, N. B.
Format Journal Article
LanguageEnglish
Published 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An analytical model for surrounding gate metal-oxide-semiconductor field effect transistors (MOS- FETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poisson and Schrodinger equations. This model is developed to provide an analytical expression for the inversion charge distribution function for all regions of the device operation. This expression is used to calculate the other important parameters like the inversion charge centroid, threshold voltage and inversion charge density. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different device dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.
Bibliography:An analytical model for surrounding gate metal-oxide-semiconductor field effect transistors (MOS- FETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poisson and Schrodinger equations. This model is developed to provide an analytical expression for the inversion charge distribution function for all regions of the device operation. This expression is used to calculate the other important parameters like the inversion charge centroid, threshold voltage and inversion charge density. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different device dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.
11-5781/TN
surrounding gate MOSFETs; energy quantization; centroid; inversion charge density
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/34/11/114001