Investigating in novel CdZnSe/CdSe/CdZnSe quantum well with 97% PLQY
Thick-shell not only provides colloidal quantum dots (QDs) stability and workability, but also plays a significant role in passivation of QDs surface defects and change of electron transport characteristics of QDs. Here, the dedicated design and synthesis of high luminescence CdZnSe/CdSe/CdZnSe quan...
Saved in:
Published in | Modern physics letters. B, Condensed matter physics, statistical physics, applied physics Vol. 34; no. 21; p. 2050222 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
30.07.2020
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thick-shell not only provides colloidal quantum dots (QDs) stability and workability, but also plays a significant role in passivation of QDs surface defects and change of electron transport characteristics of QDs. Here, the dedicated design and synthesis of high luminescence CdZnSe/CdSe/CdZnSe quantum wells are reported by precisely controlled shell growth. By tuning the thicknesses of the CdSe and CdZnSe layers, photoluminescence quantum yields (PLQY) can be attained a maximum of 97% as the CdSe shell thickness is 4 monolayers and the CdZnSe shell thickness is 10 monolayers. These gradient thick shell CdZnSe/CdSe/CdZnSe quantum wells confirm the suppression of surface trap-state emission in gradient core/shell structures. Superior optical properties render CdZnSe/CdSe/CdZnSe quantum wells suitable for use in solid-state lightings. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0217-9849 1793-6640 |
DOI: | 10.1142/S021798492050222X |