Investigation of transport mechanism in transient mixed convective flow of magnetize Maxwell nanofluid subject to nonuniform source/sink
Nowadays, the heat transfer potential of the base fluids can also be improved by adding nanoparticles to them. These nanotechnology-based fluids, called nanofluid, have superior properties such as high thermal conductivity, large critical heat flux (CHF) and improved heat transfer coefficient. The p...
Saved in:
Published in | International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics Vol. 36; no. 24 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
30.09.2022
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nowadays, the heat transfer potential of the base fluids can also be improved by adding nanoparticles to them. These nanotechnology-based fluids, called nanofluid, have superior properties such as high thermal conductivity, large critical heat flux (CHF) and improved heat transfer coefficient. The purpose of this paper is to study the thermal effectiveness of nanoparticles in transient flow of Maxwell fluid together the properties of mixed convection and magnetic field. Thermal field is controlled with the novel aspects of variable conductivity and nonuniform heat sink/source. Additionally, the impact of Brownian and thermophoretic diffusions is considered caused by nanoparticles dispersion in the fluid. The appropriate conversions yield the governing nonlinear ordinary differential system. Homotopic approach has been utilized to attain the solution of differential system and results are envisioned graphically. This study explores that the buoyancy ratio and mixed convection parameters enhance the velocity field. Further, the heat transfer rate rises significantly as the thermophoretic and Brownian diffusion parameters increase. Moreover, the effect of nonuniform heat source/sink on temperature field is noticed to be an increasing trend of temperature profile. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0217-9792 1793-6578 |
DOI: | 10.1142/S0217979222501557 |