Creation of a new class of radiosensitizers for glioblastoma based on the mibefradil pharmacophore

Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system with a dismal prognosis. Locoregional failure is common despite high doses of radiation therapy, which has prompted great interest in developing novel strategies to radiosensitize these cancers. Our group pre...

Full description

Saved in:
Bibliographic Details
Published inOncotarget Vol. 12; no. 9; pp. 891 - 906
Main Authors Paradkar, Sateja, Herrington, James, Hendricson, Adam, Hewawasam, Piyasena, Plummer, Mark, Hoyer, Denton, Sundaram, Ranjini K., Surovtseva, Yulia V., Bindra, Ranjit S.
Format Journal Article
LanguageEnglish
Published United States Impact Journals LLC 27.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system with a dismal prognosis. Locoregional failure is common despite high doses of radiation therapy, which has prompted great interest in developing novel strategies to radiosensitize these cancers. Our group previously identified a calcium channel blocker (CCB), mibefradil, as a potential GBM radiosensitizer. We discovered that mibefradil selectively inhibits a key DNA repair pathway, alternative non-homologous end joining. We then initiated a phase I clinical trial that revealed promising initial efficacy of mibefradil, but further development was hampered by dose-limiting toxicities, including CCB-related cardiotoxicity, off-target hERG channel and cytochrome P450 enzymes (CYPs) interactions. Here, we show that mibefradil inhibits DNA repair independent of its CCB activity, and report a series of mibefradil analogues which lack CCB activity and demonstrate reduced hERG and CYP activity while retaining potency as DNA repair inhibitors. We present pharmacokinetic studies of the top analogues with evidence of brain penetration. We also report a targeted siRNA-based screen which suggests a possible role for mTOR and Akt in DNA repair inhibition by this class of drugs. Taken together, these data reveal a new class of mibefradil-based DNA repair inhibitors which can be further advanced into pre-clinical testing and eventually clinical trials, as potential GBM radiosensitizers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.27933