Periostin, a signal transduction intermediate in TGF-β-induced EMT in U-87MG human glioblastoma cells, and its inhibition by anthocyanidins

Periostin is a secreted protein that is highly expressed in glioblastoma cells as compared to normal brain tissue, and is therefore considered as a potential biomarker in therapeutic modalities. Its contribution in the cancer cells invasive phenotype is, however, poorly understood. This work investi...

Full description

Saved in:
Bibliographic Details
Published inOncotarget Vol. 9; no. 31; pp. 22023 - 22037
Main Authors Ouanouki, Amira, Lamy, Sylvie, Annabi, Borhane
Format Journal Article
LanguageEnglish
Published United States Impact Journals LLC 24.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Periostin is a secreted protein that is highly expressed in glioblastoma cells as compared to normal brain tissue, and is therefore considered as a potential biomarker in therapeutic modalities. Its contribution in the cancer cells invasive phenotype is, however, poorly understood. This work investigates the role of periostin in U-87 MG glioblastoma cell invasion, cell migration and in Transforming Growth Factor β (TGF-β)-induced epithelial-mesenchymal transition (EMT). Periostin gene silencing, using small interfering RNA, decreased TGF-β-induced mesenchymal marker expression of fibronectin and vimentin, partly through reduced Smad2, Akt and Fak phosphorylation as well as U-87 MG cell invasion and migration. The effects of anthocyanidins, the most abundant diet-derived flavonoids, were examined on periostin-mediated downstream signaling pathways. Anthocyanidins were found to decrease periostin expression whether added under pre-, co- or post-treatment conditions along with TGF-β, and altered the Akt and Fak signaling pathways. These effects were similar to Galunisertib (LY2157299), a small molecule inhibitor of the TGF-β receptor I kinase. Taken together, our data demonstrate that periostin acts as a central element in TGF-β-induced EMT, which can be prevented by diet-derived anthocyanidins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.25153