Efficient Separation of Photoexcited Charge at Interface between Pure CeO2 and Y3+-Doped CeO2 with Heterogonous Doping Structure for Photocatalytic Overall Water Splitting

Enhancement of photoexcited charge separation in semiconductor photocatalysts is one of the important subjects to improve the efficiency of energy conversion for photocatalytic overall water splitting into H2 and O2. In this study, we report an efficient separation of photoexcited charge at the inte...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 2; p. 350
Main Authors Hou, Honghao, Yamada, Hirohisa, Nitta, Atsumi, Murakami, Yoshinori, Saito, Nobuo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 12.01.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Enhancement of photoexcited charge separation in semiconductor photocatalysts is one of the important subjects to improve the efficiency of energy conversion for photocatalytic overall water splitting into H2 and O2. In this study, we report an efficient separation of photoexcited charge at the interface between non-doped pure CeO2 and Y3+-doped CeO2 phases on particle surfaces with heterogeneous doping structure. Neither non-doped pure CeO2 and homogeneously Y3+-doped CeO2 gave activities for photocatalytic H2 and O2 production under ultraviolet light irradiation, meaning that both single phases showed little activity. On the other hand, Y3+-heterogeneously doped CeO2 of which the surface was composed of non-doped pure CeO2, and Y3+-doped CeO2 phases exhibited remarkable photocatalytic activities, indicating that the interfacial heterostructure between non-doped pure CeO2 and Y3+-doped CeO2 phases plays an important role for the activation process. The role of the interface between two different phases for activated expression was investigated by selective photo-reduction and oxidation deposition techniques of metal ion, resulting that the interface between two phases become an efficient separation site of photoexcited charge. Electronic band structures of both phases were investigated by the spectroscopic method, and then a mechanism of charge separation is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14020350