Phonon contribution to nonionizing energy loss in silicon detectors
Nonionizing energy loss(NIEL) has been applied to a number of studies concerning displacement damage effects in materials and devices. However, most studies consider only the contribution of displacement damage effects,neglecting the contribution from phonons. In this paper, a NIEL model, which cons...
Saved in:
Published in | Chinese physics C Vol. 39; no. 6; pp. 81 - 84 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1137 0254-3052 |
DOI | 10.1088/1674-1137/39/6/066004 |
Cover
Loading…
Summary: | Nonionizing energy loss(NIEL) has been applied to a number of studies concerning displacement damage effects in materials and devices. However, most studies consider only the contribution of displacement damage effects,neglecting the contribution from phonons. In this paper, a NIEL model, which considers the contribution of phonons,has been established using the Monte Carlo code SRIM. The maximum endurable fluence for silicon detectors has been estimated using the equivalent irradiation fluence compared with experimental data for the incident particles.NIEL is proportional to the equivalent irradiation fluence that the detector has received. |
---|---|
Bibliography: | 11-5641/O4 irradiation concerning incident proportional phonon convert files decreasing constants reaches Nonionizing energy loss(NIEL) has been applied to a number of studies concerning displacement damage effects in materials and devices. However, most studies consider only the contribution of displacement damage effects,neglecting the contribution from phonons. In this paper, a NIEL model, which considers the contribution of phonons,has been established using the Monte Carlo code SRIM. The maximum endurable fluence for silicon detectors has been estimated using the equivalent irradiation fluence compared with experimental data for the incident particles.NIEL is proportional to the equivalent irradiation fluence that the detector has received. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/39/6/066004 |