A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator

We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be st...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 6; pp. 366 - 370
Main Author 张颜艳 闫露露 赵文宇 孟森 樊松涛 张龙 郭文阁 张首刚 姜海峰
Format Journal Article
LanguageEnglish
Published 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.
Bibliography:Zhang Yan-Yan, Yan Lu-Lu, Zhao Wen-Yu, Meng Sen, Fan Song-Tao, Zhang Long, Guo Wen-Ge, Zhang Shou-Gang, and Jiang Hai-Feng( a)Key Laboratory of Time and Frequency Standards, National Time Service Center, Xi'an 710600, China b) University of the Chinese Academy of Sciences, Beijing 100049, China c) School of Science, Xi' an Shiyou University, Xi' an 710065, China
We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.
optical frequency comb, fiber laser, frequency stabilization, frequency instability
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/6/064209