Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities

Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hert...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 32; no. 7; pp. 110 - 113
Main Author 孟超 黄璞 周经纬 段昌奎 杜江峰
Format Journal Article
LanguageEnglish
Published 01.07.2015
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/32/7/076201

Cover

Loading…
More Information
Summary:Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.
Bibliography:Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.
11-1959/O4
MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng(1.Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics University of Science and Technology of China, Hefei 230026 2.Department of Physics, University of Science and Technology of China, Hefei 230026)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/7/076201