Current-induced magnetic switching of an arbitrary oriented single-molecule magnet in the cotunneling regime

Dynamics of current-induced magnetic switching of a single-molecule magnet in the case of Coulomb blockade is investigated theoretically. The molecule is weakly coupled to two ferromagnetic metallic electrodes with collinear magnetic moments, and the molecule's easy axis is assumed to form an a...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 322; no. 9; pp. 1265 - 1268
Main Authors Misiorny, Maciej, Barnaś, Józef
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dynamics of current-induced magnetic switching of a single-molecule magnet in the case of Coulomb blockade is investigated theoretically. The molecule is weakly coupled to two ferromagnetic metallic electrodes with collinear magnetic moments, and the molecule's easy axis is assumed to form an arbitrary angle with these moments. The central focus of the paper is placed on discussing the influence of magnetic configuration of the system on the switching mechanism. It is shown that the crucial role in the switching process is played by the angle between the SMM's easy axis and electrodes’ magnetic moments.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-8853
DOI:10.1016/j.jmmm.2009.01.043