A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states

Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 5; pp. 231 - 238
Main Author 徐淑奖 陈秀波 王连海 钮心忻 杨义先
Format Journal Article
LanguageEnglish
Published 01.05.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/5/050306

Cover

More Information
Summary:Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security.
Bibliography:quantum information hiding, quantum covert'channel, entanglement swapping, high-level Bell states
11-5639/O4
Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/5/050306