Revisiting the evolution of non-radiative supernova remnants: a hydrodynamical-informed parametrization of the shock positions
ABSTRACT Understanding the evolution of a supernova remnant shell in time is fundamental. Such understanding is critical to build reliable models of the dynamics of the supernova remnant shell interaction with any pulsar wind nebula it might contain. Here, we perform a large study of the parameter s...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 508; no. 3; pp. 3194 - 3207 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ABSTRACT
Understanding the evolution of a supernova remnant shell in time is fundamental. Such understanding is critical to build reliable models of the dynamics of the supernova remnant shell interaction with any pulsar wind nebula it might contain. Here, we perform a large study of the parameter space for the 1D spherically symmetric evolution of a supernova remnant, accompanying it by analytical analysis. Assuming, as is usual, an ejecta density profile with a power-law core and an envelope, and a uniform ambient medium, we provide a set of highly accurate approximations for the evolution of the main structural features of supernova remnants, such as the reverse and forward shocks and the contact discontinuity. We compare our results with previously adopted approximations, showing that existing simplified prescriptions can easily lead to large errors. In particular, in the context of pulsar wind nebulae modelling, an accurate description for the supernova remnant reverse shock is required. We also study in depth the self-similar solutions for the initial phase of evolution, when the reverse shock propagates through the envelope of the ejecta. Since these self-similar solutions are exact, but not fully analytical, we here provide highly accurate approximations as well. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab2600 |