The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption

Abstract The phenomenon of peripheral coronal loop contraction during solar flares and eruptions, recently discovered in observations, has gradually drawn the attention of solar physicists. However, its underlying physical mechanism is still uncertain. One possible mechanism is Hudson’s implosion co...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 911; no. 1; p. 2
Main Authors Wang, Juntao, Jiang, Chaowei, Yuan, Ding, Zou, Peng
Format Journal Article
LanguageEnglish
Published Philadelphia IOP Publishing 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The phenomenon of peripheral coronal loop contraction during solar flares and eruptions, recently discovered in observations, has gradually drawn the attention of solar physicists. However, its underlying physical mechanism is still uncertain. One possible mechanism is Hudson’s implosion conjecture, which attributes the contraction of peripheral coronal loops to magnetic pressure reduction in the magnetic energy liberation core, while other researchers proposed alternative explanations. In previous observational studies we also note the disappearance of peripheral shrinking loops in the late phase, of which there is a lack of investigation and interpretation. In this paper, we exploit a full MHD simulation of solar eruption to study the causes of the two phenomena. It is found that the loop motion in the periphery is well correlated with magnetic energy accumulation and dissipation in the core, and the loop shrinkage is caused by a more significant reduction in magnetic pressure gradient force than in magnetic tension force, consistent with the implosion conjecture. The peripheral contracting loops in the late phase act as inflow to reconnect with central erupting structures, which destroys their identities and naturally explains their disappearance. We also propose a positive feedback between the peripheral magnetic reconnection and the central eruption.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/abe637