Small-angle X-ray scattering probe of intermolecular interaction in red blood cells
With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. C...
Saved in:
Published in | Chinese physics C Vol. 39; no. 3; pp. 83 - 86 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. |
---|---|
Bibliography: | With high concentrations of hemoglobin (Hb) in red blood cells, self-interactions among these molecules could increase the propensities of their polymerization and aggregation. In the present work, high concentration Hb in solution and red blood cells were analyzed by small-angle X-ray scattering. Calculation of the effective structure factor indicates that the interaction of Hb molecules is the same when they are crowded together in both the cell and physiological saline. The Hb molecules stay individual without the formation of aggregates and clusters in cells. 11-5641/O4 small-angle X-ray scattering, protein-protein interaction, hemoglobin LIU Guan-Fen WANG We-Ji XU Jia-Hua DONG Yu-Hui( Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/39/3/038001 |