An equivalent circuit model for terahertz quantum cascade lasers:Modeling and experiments

Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 9; pp. 257 - 260
Main Author 姚辰 徐天鸿 万文坚 朱永浩 曹俊诚
Format Journal Article
LanguageEnglish
Published 01.09.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/9/094208

Cover

More Information
Summary:Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model.Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.
Bibliography:terahertz,quantum cascade laser,equivalent circuit model,five-level rate equations
11-5639/O4
Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model.Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/9/094208