Thermal simulation of flexible LED package enhanced with copper pillars
Chip on flexible substrate (COF) is a new packaging technology for light emitting diodes (LED). This paper investigated the effect of Cu-pillar in the polyimide (PI) layer on the thermal properties of COF LED pack- ages by finite element analysis. The thermal distribution and thermal resistance were...
Saved in:
Published in | Journal of semiconductors Vol. 36; no. 6; pp. 85 - 88 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-4926 |
DOI | 10.1088/1674-4926/36/6/064011 |
Cover
Summary: | Chip on flexible substrate (COF) is a new packaging technology for light emitting diodes (LED). This paper investigated the effect of Cu-pillar in the polyimide (PI) layer on the thermal properties of COF LED pack- ages by finite element analysis. The thermal distribution and thermal resistance were studied in both COF LED packages with and without Cu-pillar. The PI layer showed the highest thermal resistance in the typical package and led to a high chip temperature. With the addition of Cu-pillars, however, the thermal resistance of the PI layer sig- nificantly decreased due to the improvement of vertical thermal dissipation under LED chips. Based on the results of simulation and calculation, the relationship between the amount of Cu-pillar and thermal resistance of the COF package has been built. For the packages studied in this research, an 8 × 8 Cu-pillars array was adequate to improve the thermal performance of COF packages. |
---|---|
Bibliography: | 11-5781/TN Chip on flexible substrate (COF) is a new packaging technology for light emitting diodes (LED). This paper investigated the effect of Cu-pillar in the polyimide (PI) layer on the thermal properties of COF LED pack- ages by finite element analysis. The thermal distribution and thermal resistance were studied in both COF LED packages with and without Cu-pillar. The PI layer showed the highest thermal resistance in the typical package and led to a high chip temperature. With the addition of Cu-pillars, however, the thermal resistance of the PI layer sig- nificantly decreased due to the improvement of vertical thermal dissipation under LED chips. Based on the results of simulation and calculation, the relationship between the amount of Cu-pillar and thermal resistance of the COF package has been built. For the packages studied in this research, an 8 × 8 Cu-pillars array was adequate to improve the thermal performance of COF packages. COF; LED; Cu-pillar; thermal performance; FE simulation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/36/6/064011 |