Three-wavelength generation from cascaded wavelength conversion in monolithic periodically poled lithium niobate
Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, a...
Saved in:
Published in | Chinese physics B Vol. 24; no. 1; pp. 290 - 292 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/24/1/014209 |
Cover
Loading…
Summary: | Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained. |
---|---|
Bibliography: | Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained. nonlinear optics; periodically poled lithium niobate; cascaded wavelength conversion process 11-5639/O4 Xiao Kun,Zhang Jing,Chen Bao-Qin,Zhang Qiu-Lin,Zhang Dong-Xiang,Feng Bao-Hua,Zhang Jing-Yuan(1.Key Laboratory of Optical Physics,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Department of Physics,Georgia Southern University,Statesboro,Georgia 30460,USA,) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/24/1/014209 |