Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes

InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, i...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 6; pp. 25 - 30
Main Author 汪莱 杨迪 郝智彪 罗毅
Format Journal Article
LanguageEnglish
Published 01.06.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/6/067303

Cover

Abstract InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
AbstractList InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal-organic-vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
Author 汪莱 杨迪 郝智彪 罗毅
AuthorAffiliation TsinghuaNationalLaboratoryonInformationScienceandTechnologyandDepartmentofElectronicEngineering,TsinghuaUniversity,Beijing100084,China
Author_xml – sequence: 1
  fullname: 汪莱 杨迪 郝智彪 罗毅
BookMark eNqFkEFPGzEQRi0EEiHwE5AsTr0ssddex6ueqqikSKG9wNma2LMbo429sZ0K_j2Jgjj00tNc3hvpe1fkPMSAhNxyds-Z1jOu5rLirFGzWs7UjKm5YOKMTGrW6EpoIc_J5Iu5JFc5vzKmOKvFhPRPWGCoYuoheFv9hTEmOm4gI8XRF3h7p7Gjj2EJv-luD6Hst9TFkikER8sGfaIwjoO3UHwMmfpAB99vSoVbX4oPPXU-OszX5KKDIePN552Sl4efz4tf1erP8nHxY1VZwUWpQHPNoF7XSkrGEZlunFTQOaux4_OGrx1IbtEpQKmdXFsnWutkZ3XLnbRiSr6d_o4p7vaYi9n6bHEYIGDcZ8PnWtWsFU17QL-fUJtizgk7Yw-DjzNKAj8YzswxrzmmM8d0ppZGmVPeg938Y4_JbyG9_9e7-_Q2MfS7Q6EvUSnZSqWlEh_pCI1h
CitedBy_id crossref_primary_10_1002_pssa_201800455
crossref_primary_10_1016_j_spmi_2016_02_016
crossref_primary_10_1021_acsami_1c15873
crossref_primary_10_1088_2053_1591_ab5be0
crossref_primary_10_3390_nano12050800
crossref_primary_10_1364_OE_512036
crossref_primary_10_1364_OL_428013
crossref_primary_10_1039_D3CE00989K
crossref_primary_10_1109_JPHOT_2022_3145188
crossref_primary_10_1364_OE_395419
crossref_primary_10_1080_09205071_2020_1821298
crossref_primary_10_1364_PRJ_411863
crossref_primary_10_1364_OE_412348
Cites_doi 10.7567/JJAP.50.065601
10.1103/PhysRevB.83.115316
10.1016/S0921-5107(98)00359-6
10.1063/1.4770301
10.1002/adma.v21:45
10.1103/PhysRevB.82.033411
10.1063/1.3079525
10.1186/1556-276X-7-617
10.1143/JJAP.30.L1705
10.1143/JJAP.31.L139
10.1016/j.jcrysgro.2011.05.002
10.1016/j.jcrysgro.2013.03.012
10.1016/S0022-0248(02)02130-9
10.1063/1.3665069
10.1126/science.1066790
10.1143/JJAP.38.1875
10.1103/PhysRevB.88.214103
10.1063/1.2767217
10.1063/1.3596436
10.1126/science.290.5500.2282
10.1007/s00339-009-5186-2
10.1063/1.96206
10.1016/j.jcrysgro.2008.08.021
10.1063/1.92959
10.1063/1.2800797
10.1143/JJAP.28.L2112
10.1049/el:19940939
10.1016/j.spmi.2015.02.005
10.1063/1.96549
10.1063/1.3103559
10.1016/j.tsf.2005.12.144
10.1109/JQE.2013.2281062
10.1016/S0167-577X(03)00293-3
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/24/6/067303
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes
EISSN 2058-3834
1741-4199
EndPage 30
ExternalDocumentID 10_1088_1674_1056_24_6_067303
664946846
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c313t-a8180a2b264401ee085d46afdc8ef1751bda41ced6ae48d4bcd39cd4fc891d4c3
ISSN 1674-1056
IngestDate Fri Sep 05 04:12:05 EDT 2025
Thu Apr 24 23:20:36 EDT 2025
Tue Jul 01 02:55:10 EDT 2025
Wed Feb 14 10:29:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c313t-a8180a2b264401ee085d46afdc8ef1751bda41ced6ae48d4bcd39cd4fc891d4c3
Notes InGaN, quantum dot, light emitting diode, MOVPE
InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
11-5639/O4
Wang Lai, Yang Di, Hao Zhi-Biao, and Luo Yi( Tsinghua National Laboratory on Information Science and Technology and Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1786209359
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1786209359
crossref_citationtrail_10_1088_1674_1056_24_6_067303
crossref_primary_10_1088_1674_1056_24_6_067303
chongqing_primary_664946846
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2015
References Zhao W (18) 2012
22
Tessarek C (32) 2014; 47
Nakajima K (14) 1999; 38
24
25
26
Lv W B (35) 2011; 28
Williams D P (23) 2005; 72
27
28
Lv W B (37) 2013; 52
Amano H (2) 1989; 28
Zhao W (29) 2011; 50
31
10
Lv W B (36) 2014; 7
11
12
34
Li H J (38) 2013; 6
13
Wang L (30) 2011
Nakamura S (3) 1991; 30
15
16
17
39
19
1
Nakamura S (4) 1992; 31
5
6
7
8
Park I K (33) 2011; 4
9
40
41
20
42
21
References_xml – volume: 47
  issn: 0022-3727
  year: 2014
  ident: 32
  publication-title: J. Phys. D: Appl. Phys.
– volume: 50
  issn: 1347-4065
  year: 2011
  ident: 29
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.50.065601
– ident: 31
  doi: 10.1103/PhysRevB.83.115316
– ident: 19
  doi: 10.1016/S0921-5107(98)00359-6
– ident: 21
  doi: 10.1063/1.4770301
– ident: 41
  doi: 10.1002/adma.v21:45
– ident: 24
  doi: 10.1103/PhysRevB.82.033411
– ident: 27
  doi: 10.1063/1.3079525
– volume: 52
  issn: 1347-4065
  year: 2013
  ident: 37
  publication-title: Jpn. J. Appl. Phys.
– ident: 34
  doi: 10.1186/1556-276X-7-617
– volume: 30
  start-page: L1705
  issn: 0021-4922
  year: 1991
  ident: 3
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.30.L1705
– volume: 31
  start-page: L139
  issn: 0021-4922
  year: 1992
  ident: 4
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.31.L139
– ident: 12
  doi: 10.1016/j.jcrysgro.2011.05.002
– ident: 17
  doi: 10.1016/j.jcrysgro.2013.03.012
– ident: 25
  doi: 10.1016/S0022-0248(02)02130-9
– ident: 22
  doi: 10.1063/1.3665069
– ident: 8
  doi: 10.1126/science.1066790
– volume: 38
  start-page: 1875
  issn: 1347-4065
  year: 1999
  ident: 14
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.38.1875
– ident: 20
  doi: 10.1103/PhysRevB.88.214103
– volume: 4
  issn: 1882-0786
  year: 2011
  ident: 33
  publication-title: Appl. Phys. Express
– ident: 11
  doi: 10.1063/1.2767217
– ident: 9
  doi: 10.1063/1.3596436
– ident: 7
  doi: 10.1126/science.290.5500.2282
– ident: 28
  doi: 10.1007/s00339-009-5186-2
– volume: 7
  issn: 1882-0786
  year: 2014
  ident: 36
  publication-title: Appl. Phys. Express
– ident: 13
  doi: 10.1063/1.96206
– ident: 16
  doi: 10.1016/j.jcrysgro.2008.08.021
– ident: 5
  doi: 10.1063/1.92959
– volume: 6
  issn: 1882-0786
  year: 2013
  ident: 38
  publication-title: Appl. Phys. Express
– ident: 39
  doi: 10.1063/1.2800797
– start-page: 1
  year: 2011
  ident: 30
  publication-title: Phys. Status Solidi C
– volume: 28
  start-page: L2112
  issn: 0021-4922
  year: 1989
  ident: 2
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.28.L2112
– volume: 28
  issn: 0256-307X
  year: 2011
  ident: 35
  publication-title: Chin. Phys. Lett.
– ident: 6
  doi: 10.1049/el:19940939
– ident: 42
  doi: 10.1016/j.spmi.2015.02.005
– ident: 1
  doi: 10.1063/1.96549
– ident: 40
  doi: 10.1063/1.3103559
– ident: 15
  doi: 10.1016/j.tsf.2005.12.144
– ident: 10
  doi: 10.1109/JQE.2013.2281062
– start-page: 1
  year: 2012
  ident: 18
  publication-title: Phys. Status Solidi A
– ident: 26
  doi: 10.1016/S0167-577X(03)00293-3
– volume: 72
  start-page: 23531823
  year: 2005
  ident: 23
  publication-title: Phys. Rev. B
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.1693187
SecondaryResourceType review_article
Snippet InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Epitaxy
Indium gallium nitrides
InGaN
Light-emitting diodes
Monitoring
MOVPE
Optoelectronics
Quantum dots
Semiconductors
光电子材料
发光二极管
应用程序
汽相外延
量子点
金属
Title Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes
URI http://lib.cqvip.com/qk/85823A/201506/664946846.html
https://www.proquest.com/docview/1786209359
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIvaOMiygAZibcqaxO7TvLIuA20jT1sYvBiObazRmzJWNtp4gHxH_iH_JId39IUTcB4sVKrPpVyvp5zfK4IPackHeU6Y5EsRiSicgxykOgkylMp8lTlRCkT0d3ZZVsH9P3h-LDX-96tLpkVG_LblXUl_8NV2AO-mirZa3C2JQob8Az8hRU4DOs_8XhHg-kc0hWIG9Ak28_nAmzrwekE9NRAm-EgF75w5K3YNcWUoG1OBnApnYYsyups0I1nG1fIse0zok8qlx6tqkb5pMPQ3WBiZ1h6D8l0McT5o3dEb4uqlSx-61W1kHvWU_t5UkWblWjC9vbcbn-quj6JeLzInfJilKUUBLxrGR7krKuV9njqCk0GUoZcKc5BBBrPQqBmqlcoLDbk1J5abqL9m3JrUw5tsD3LuCHGDTGeUM64I3MD3UzS1Ib5333YC5qcmbYW5sIefj9UgGXZsN0bJnTIho6M6c8xaeqjr8CRZTtnWc1b22V_Fd3xlw78wiFoDfV0fRfd2nMsu4e-WBz9-vHTIwieLHawxQ722MFNiS12sMcONtjBgB1ssYO72MFVjZexgx127qODN6_3X25FfghHJElMZpEwzQBEUhjDeRRrDSa6okyUSma6BNszLpSgsdSKCU0zRQupSC4VLWWWx4pK8gCt1E2tHyKs4GtJmYBBXzJaUlAdmSy1BgNZybIYsz5ab18fP3XNVjhjNKcMrOQ-ouGFcun715sxKsf8j6zto432WKD5lwPPArc4iFoTPxO1buZTHqdw_TeJA_mj6xJdR7cX_5PHaGV2NtdPwJqdFU8t5C4B5fSYQw
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93organic%E2%80%93vapor+phase+epitaxy+of+InGaN+quantum+dots+and+their+applications+in+light-emitting+diodes&rft.jtitle=Chinese+physics+B&rft.au=Wang%2C+Lai&rft.au=Yang%2C+Di&rft.au=Hao%2C+Zhi-Biao&rft.au=Luo%2C+Yi&rft.date=2015-06-01&rft.issn=1674-1056&rft.volume=24&rft.issue=6&rft.spage=67303&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F6%2F067303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_24_6_067303
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg