Metal-organic-vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes

InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, i...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 6; pp. 25 - 30
Main Author 汪莱 杨迪 郝智彪 罗毅
Format Journal Article
LanguageEnglish
Published 01.06.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/6/067303

Cover

More Information
Summary:InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
Bibliography:InGaN, quantum dot, light emitting diode, MOVPE
InGaN quantum dot is a promising optoelectronic material, which combines the advantages of low-dimensional and wide-gap semiconductors. The growth of InGaN quantum dots is still not mature, especially the growth by metal--organic- vapor phase epitaxy (MOVPE), which is challenge due to the lack of, itin-situ monitoring tool. In this paper, we reviewed the development of InGaN quantum dot growth by MOVPE, including our work on growth of near-UV, green, and red InGaN quantum dots. In addition, we also introduced the applications of InGaN quantum dots on visible light emitting diodes.
11-5639/O4
Wang Lai, Yang Di, Hao Zhi-Biao, and Luo Yi( Tsinghua National Laboratory on Information Science and Technology and Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/6/067303