Influence of multi-photon excitation on the atomic above-threshold ionization

Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 4; pp. 138 - 142
Main Author 田原野 王春成 李苏宇 郭福明 丁大军 Roeterdink Wim-G 陈基根 曾思良 刘学深 杨玉军
Format Journal Article
LanguageEnglish
Published 01.04.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/4/043202

Cover

Loading…
More Information
Summary:Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the abovethreshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results.
Bibliography:Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the abovethreshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results.
time-dependent pseudo-spectral scheme, above-threshold ionization, resonance structure
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/4/043202