Fabrications and characterizations of high performance 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power SBDs
In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power Schottky barrier diodes (SBDs) are fabricated with three N-type drift layer thickness values of 10 μm, 30μm, and 50 μm, respectively. The avalanche breakdown capabilities, static and transient characteristics of the fabricated devices are...
Saved in:
Published in | Chinese physics B Vol. 25; no. 4; pp. 314 - 319 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/25/4/047102 |
Cover
Loading…
Summary: | In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power Schottky barrier diodes (SBDs) are fabricated with three N-type drift layer thickness values of 10 μm, 30μm, and 50 μm, respectively. The avalanche breakdown capabilities, static and transient characteristics of the fabricated devices are measured in detail and compared with the theoretical pre- dictions. It is found that the experimental results match well with the theoretical calculation results and are very close to the 4H-SiC theoretical limit line. The best achieved breakdown voltages (BVs) of the diodes on the 10 p.m, 30 m, and 50 -tm epilayers are 1400 V, 3320 V, and 5200 V, respectively. Differential specific-on resistances (Ron-sp) are 2.1 m--cm2, 7.34 mO. cm2, and 30.3 m-. cm2, respectively. |
---|---|
Bibliography: | 4H-SiC, Schottky-barrier diodes, breakdown, differential specific-on resistance In this paper, 1.2 kV, 3.3 kV, and 5.0 kV class 4H-SiC power Schottky barrier diodes (SBDs) are fabricated with three N-type drift layer thickness values of 10 μm, 30μm, and 50 μm, respectively. The avalanche breakdown capabilities, static and transient characteristics of the fabricated devices are measured in detail and compared with the theoretical pre- dictions. It is found that the experimental results match well with the theoretical calculation results and are very close to the 4H-SiC theoretical limit line. The best achieved breakdown voltages (BVs) of the diodes on the 10 p.m, 30 m, and 50 -tm epilayers are 1400 V, 3320 V, and 5200 V, respectively. Differential specific-on resistances (Ron-sp) are 2.1 m--cm2, 7.34 mO. cm2, and 30.3 m-. cm2, respectively. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/25/4/047102 |