Hybrid virtual screening identifies dipyrazole carboxamide derivatives as novel direct InhA inhibitors with antitubercular activity
Direct inhibitors of M. tuberculosis enoyl-acyl carrier protein reductase (M. tuberculosis InhA) remain effective against variants with mutations associated with isoniazid resistance. In our previous study, structure-based virtual screening was employed to discover such inhibitors. However, most ide...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1869; no. 8; p. 130827 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Direct inhibitors of M. tuberculosis enoyl-acyl carrier protein reductase (M. tuberculosis InhA) remain effective against variants with mutations associated with isoniazid resistance. In our previous study, structure-based virtual screening was employed to discover such inhibitors. However, most identified hits exhibited limited antimycobacterial activity, with minimum inhibitory concentration (MIC) values of >100 μg/mL. To address this challenge, we refined our virtual screening strategy by integrating ligand- and structure-based virtual screening approaches. The efficacy of this hybrid virtual screening approach was validated through biological assays measuring MIC and half-maximal inhibitory concentration (IC50) for the inhibition of M. tuberculosis growth and InhA activity, respectively. Among 14 identified hits, compounds 3 and 10, classified as dipyrazole carboxamide derivatives, were validated as promising lead candidates, with MIC values of 25 and 50 μg/mL and IC50 values of 10.60 ± 0.56 and 5.08 ± 0.30 μM, respectively. The relatively low hit-to‑lead conversion rate (14 %) is ascribed to our observation that nine of the identified hits, including compounds 3 and 10, showed some level of precipitation in the MIC assay medium. Molecular dynamics simulations show that the dipyrazole carboxamide moiety in compounds 3 and 10 forms essential hydrogen bonds with nicotinamide adenine dinucleotide (oxidized form) (NAD+) in the InhA binding pocket. Notably, both compounds 3 and 10 exhibit favorable safety profiles, with no toxicity observed in Caco-2 cells at concentrations up to 100 μg/mL. Consequently, we believe that these compounds present promising starting points for further lead optimization and development of novel antitubercular agents.
[Display omitted]
•Hybrid virtual screening identified potent direct M. tuberculosis InhA inhibitors.•Compounds 3 and 10 showed low MICs and strong InhA binding interactions.•Lead compounds exhibited no cytotoxicity in Caco-2 cells up to 100 μg/mL. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 1872-8006 1872-8006 |
DOI: | 10.1016/j.bbagen.2025.130827 |