Perception of heterochromatic flicker by honeybees: a behavioural study

Freely flying honeybees were trained to discriminate a stimulus consisting of two alternating chromatic lights (heterochromatic flicker) from a steady mixture of the same two lights, using 3 different pairs of lights: blue-UV, UV-green, and green-UV. With each light pair, training to the heterochrom...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative physiology : A : Sensory, neural, and behavioral physiology Vol. 172; no. 1; pp. 1 - 6
Main Authors Lehrer, M, Wunderli, M, Srinivasan, M.V
Format Journal Article
LanguageEnglish
Published 01.02.1993
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Freely flying honeybees were trained to discriminate a stimulus consisting of two alternating chromatic lights (heterochromatic flicker) from a steady mixture of the same two lights, using 3 different pairs of lights: blue-UV, UV-green, and green-UV. With each light pair, training to the heterochromatic flicker was conducted at several flicker frequencies, using experimentally naive bees in each training. In subsequent tests, the trained bees were given a choice between the two lights that constituted the flicker, presented steady, as well as between either of them and the steady mixture. We find that bees trained to particular frequencies of heterochromatic flicker prefer one of the component lights over the other as well as over the steady mixture, suggesting that the colour they perceive in the heterochromatic flicker to which they have been trained is shifted in the direction of one of the lights contained in the flicker. The colour shift occurs at flicker frequencies that depend on the pair of lights used. We propose that the shift is generated by an effect similar to the Brucke-Bartley phenomenon known from human vision. This effect is based on the enhancement of the photoreceptors' response upon onset of stimulation, causing an intermittent light to appear brighter than a steady light of identical physical intensity. We propose that the degree of enhancement might differ among the 3 spectral classes of photoreceptor, causing the colour perceived in a heterochromatic flicker to differ from that perceived in a steady mixture of its two light components.
ISSN:0340-7594
1432-1351
DOI:10.1007/BF00214710