Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Silicon junctionless nanowire transistor(JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate.The performances of the transistor,i.e.,current drive,threshold voltage,subthreshold swing(SS),and electron mobility are evaluated.The device shows good gate control abi...
Saved in:
Published in | Chinese physics B Vol. 25; no. 6; pp. 552 - 556 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Silicon junctionless nanowire transistor(JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate.The performances of the transistor,i.e.,current drive,threshold voltage,subthreshold swing(SS),and electron mobility are evaluated.The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K.The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to50 K,which is attributed to the electron transport through one-dimensional(1D) subbands formed in the nanowire.Besides,the device exhibits a better low-field electron mobility of 290 cm2·V-1·s-1,implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties.This approach provides a potential application for nanoscale device patterning. |
---|---|
Bibliography: | Silicon junctionless nanowire transistor(JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate.The performances of the transistor,i.e.,current drive,threshold voltage,subthreshold swing(SS),and electron mobility are evaluated.The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K.The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to50 K,which is attributed to the electron transport through one-dimensional(1D) subbands formed in the nanowire.Besides,the device exhibits a better low-field electron mobility of 290 cm2·V-1·s-1,implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties.This approach provides a potential application for nanoscale device patterning. Liu-Hong Ma,Wei-Hua Han,Hao Wang,Qi-feng Lyu,Wang Zhang,Xiang Yang,Fu-Hua Yang junctionless nanowire transistor;femtosecond laser lithography;electron mobility;quantum transport 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/25/6/068103 |