Parylene-AlOx Stacks for Improved 3D Encapsulation Solutions
The demand for ultra-tight encapsulation solutions with excellent barrier and high conformality properties has increased in recent years. To meet these challenges, thin-film barrier coatings have emerged as a promising solution. In this study, we investigate well-established silicon-based plasma-enh...
Saved in:
Published in | Coatings (Basel) Vol. 13; no. 11; p. 1942 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The demand for ultra-tight encapsulation solutions with excellent barrier and high conformality properties has increased in recent years. To meet these challenges, thin-film barrier coatings have emerged as a promising solution. In this study, we investigate well-established silicon-based plasma-enhanced chemical vapor deposition (PECVD) and metal oxide atomic layer deposition (ALD) barrier coatings deposited at low temperatures (≤100 °C) regarding their abilities to address high-level 3D encapsulation applications. Various combinations of such layers are evaluated by measuring the water vapor transmission rate (WVTR) and considering the conformality properties. The impact and the benefits of the organic film integration, namely parylene VT4 grade, on the barrier performances is assessed. Among these combinations, parylene-AlOx stack emerges as one of the most effective solutions, obtaining a WVTR of 3.1 × 10−4 g m−2 day−1 at 38 °C and 90% relative humidity conditions. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings13111942 |