Comparison of performance between rescaled range analysis and rescaled variance analysis in detecting abrupt dynamic change

In the present paper, a comparison of the performance between moving cutting data-rescaled range analysis (MC- R/S) and moving cutting data-rescaled variance analysis (MC-V/S) is made. The results clearly indicate that the operating efficiency of the MC-R/S algorithm is higher than that of the MC-V/...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 4; pp. 581 - 588
Main Author 何文平 刘群群 姜允迪 卢莹
Format Journal Article
LanguageEnglish
Published 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present paper, a comparison of the performance between moving cutting data-rescaled range analysis (MC- R/S) and moving cutting data-rescaled variance analysis (MC-V/S) is made. The results clearly indicate that the operating efficiency of the MC-R/S algorithm is higher than that of the MC-V/S algorithm. In our numerical test, the computer time consumed by MC-V/S is approximately 25 times that by MC-R/S for an identical window size in artificial data. Except for the difference in operating efficiency, there are no significant differences in performance between MC-R/S and MC-V/S for the abrupt dynamic change detection. Mc-R/s and MC-V/S both display some degree of anti-noise ability. However, it is important to consider the influences of strong noise on the detection results of MC-R/S and MC-V/S in practical application
Bibliography:moving cutting data-rescaled range analysis, moving cutting data-rescaled variance analysis, abrupt dynamic change
In the present paper, a comparison of the performance between moving cutting data-rescaled range analysis (MC- R/S) and moving cutting data-rescaled variance analysis (MC-V/S) is made. The results clearly indicate that the operating efficiency of the MC-R/S algorithm is higher than that of the MC-V/S algorithm. In our numerical test, the computer time consumed by MC-V/S is approximately 25 times that by MC-R/S for an identical window size in artificial data. Except for the difference in operating efficiency, there are no significant differences in performance between MC-R/S and MC-V/S for the abrupt dynamic change detection. Mc-R/s and MC-V/S both display some degree of anti-noise ability. However, it is important to consider the influences of strong noise on the detection results of MC-R/S and MC-V/S in practical application
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/4/049205