Study of Optical and Electrical Properties of RF-Sputtered ZnSe/ZnTe Heterojunctions for Sensing Applications
Cadmium (Cd)-free photodiodes based on n-type Zinc Selenide/p-type Zinc Telluride (n-ZnSe/p-ZnTe) heterojunctions were prepared by Radio Frequency-Magnetron Sputtering (RF-MS) technique, and their detailed optical and electrical characterization was performed. Onto an optical glass substrate, 100 nm...
Saved in:
Published in | Coatings (Basel) Vol. 13; no. 1; p. 208 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cadmium (Cd)-free photodiodes based on n-type Zinc Selenide/p-type Zinc Telluride (n-ZnSe/p-ZnTe) heterojunctions were prepared by Radio Frequency-Magnetron Sputtering (RF-MS) technique, and their detailed optical and electrical characterization was performed. Onto an optical glass substrate, 100 nm gold (Au) thin film was deposited by Thermal Vacuum Evaporation (TVE) representing the back-contact, followed by the successive RF-MS deposition of ZnTe, ZnSe, Zinc Oxide (ZnO) and Indium Tin Oxide (ITO) thin films, finally resulting in the Au/ZnTe/ZnSe/ZnO/ITO sub-micrometric “substrate”-type configuration. Next, the optical characterization by Ultraviolet-Visible (UV-VIS) spectroscopy was performed on the component thin films, and their optical band gap values were determined. The electrical measurements in the dark and under illumination at different light intensities were subsequently performed. The Current–Voltage (I–V) characteristics in the dark are nonlinear with a relatively high asymmetry, following the modified Shockley–Read equation. From their analysis, the series resistance, shunt resistance, the ideality factor and saturation current were determined with high accuracy. It is worth noting that the action spectrum of the structure is shifted to short wavelengths. A sensibility test for the 420–500 nm range was performed while changing the intensity of the incident light from 100 mW/cm2 down to 10 mW/cm2 and measuring the photocurrent. The obtained results provided sufficient information to consider the present sub-micrometric photodiodes based on n-ZnSe/p-ZnTe heterojunctions to be more suitable for the UV domain, demonstrating their potential for integration within UV photodetectors relying on environmentally-friendly materials. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings13010208 |