Close-Loop Bell-Bloom Magnetometer with Amplitude Modulation

A high sensitive optical amplitude modulation magnetometer is investigated and demonstrated experimentally. We build an experimental platform for the atomic magnetometer and configure it as a Bell-Bloom magnetometer with amplitude modulation of 50% duty cycle square waveform. The open-loop input-out...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 32; no. 9; pp. 174 - 177
Main Author 黄海超 董海峰 郝慧杰 胡旭阳
Format Journal Article
LanguageEnglish
Published 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A high sensitive optical amplitude modulation magnetometer is investigated and demonstrated experimentally. We build an experimental platform for the atomic magnetometer and configure it as a Bell-Bloom magnetometer with amplitude modulation of 50% duty cycle square waveform. The open-loop input-output model is deduced from the Bloch equation and is verified experimentally. Instead of locking the frequency by using a voltage control oscillator, we realize a closed loop using the coils to generate a feedback field which avoids the stringent require- ment of a high resolution frequency meter and markedly expands the dynamic range as well as the bandwidth. We realize an open loop sensitivity of 0.8pT/Hz1/2 at 20 Hz using a single light beam, which exceeds that of the state-of-the-art Bell-Bloom magnetometers, and the corresponding closed loop sensitivity is 1.2 pT/Hz1/2.
Bibliography:A high sensitive optical amplitude modulation magnetometer is investigated and demonstrated experimentally. We build an experimental platform for the atomic magnetometer and configure it as a Bell-Bloom magnetometer with amplitude modulation of 50% duty cycle square waveform. The open-loop input-output model is deduced from the Bloch equation and is verified experimentally. Instead of locking the frequency by using a voltage control oscillator, we realize a closed loop using the coils to generate a feedback field which avoids the stringent require- ment of a high resolution frequency meter and markedly expands the dynamic range as well as the bandwidth. We realize an open loop sensitivity of 0.8pT/Hz1/2 at 20 Hz using a single light beam, which exceeds that of the state-of-the-art Bell-Bloom magnetometers, and the corresponding closed loop sensitivity is 1.2 pT/Hz1/2.
11-1959/O4
HUANG Hai-Chao, DONG Hai-Feng, HAO Hui-Jie, HU Xu-Yang( School of Instrumentation Science and Opto-Electronies Engineering, Beihang University, Beijing 100191 )
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/9/098503