Cisplatin triggers oxidative stress, apoptosis and pro-inflammatory responses by inhibiting the SIRT1-mediated Nrf2 pathway in chondrocytes

Although the height of the proliferating layer that was suppressed in the growth plate has been recognized as an adverse effect of cisplatin in pediatric cancer survivors, the detailed pathological mechanism has not been elucidated. Sirtuin-1 (SIRT1) has been reported as an essential modulator of ca...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental toxicology Vol. 38; no. 10; pp. 2476 - 2486
Main Authors Hsieh, Pei-Ling, Tsai, Kun-Ling, Chou, Wan-Ching, Wu, Chin-Hsien, Jou, I-Ming, Tu, Yuan-Kun, Ma, Ching-Hou
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although the height of the proliferating layer that was suppressed in the growth plate has been recognized as an adverse effect of cisplatin in pediatric cancer survivors, the detailed pathological mechanism has not been elucidated. Sirtuin-1 (SIRT1) has been reported as an essential modulator of cartilage homeostasis, but its role in cisplatin-induced damage of chondrocytes remains unclear. In this study, we examined how cisplatin affected the expression of SIRT1 and cell viability. Next, we showed downregulation of SIRT1 after cisplatin treatment resulted in suppression of Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), leading to inhibition of Nrf2 nuclear translocation and subsequently decreased Heme oxygenase-1(HO-1) and NAD(P)H Quinone Dehydrogenase 1(NQO-1) expression. Blockage of the SIRT1/ PGC-1α axis not only increased oxidative stress with lower antioxidant SOD and GSH, but also contributed to mitochondrial dysfunction evidenced by the collapse of membrane potential and repression of mitochondrial DNA copy number and ATP. We also found that Cisplatin up-regulated the p38 phosphorylation, pro-inflammatory events and matrix metalloproteinases (MMPs) in chondrocytes through the SIRT1-modulated antioxidant manner. Collectively, our findings suggest that preservation of SIRT1 in chondrocytes may be a potential target to ameliorate growth plate dysfunction for cisplatin-receiving pediatric cancer survivors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-4081
1522-7278
DOI:10.1002/tox.23885