First Approach to Doping Silver into CrB2 Thin Films Deposited by DC/HiPIMS Technology in Terms of Mechanical and Tribological Properties

Doping of transition metal diborides (TMB2) films with soft metals (Ag, Au, Pt) can extend their application potential to tribological and biomedical fields. Here, a combination of direct current unbalanced magnetron sputtering (DC-UBMS) with high-power pulsed magnetron sputtering (HiPIMS) was used...

Full description

Saved in:
Bibliographic Details
Published inCoatings (Basel) Vol. 13; no. 5; p. 824
Main Authors Truchlý, Martin, Haršáni, Marián, Frkáň, Adam, Fiantok, Tomáš, Sahul, Martin, Roch, Tomáš, Kúš, Peter, Mikula, Marián
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Doping of transition metal diborides (TMB2) films with soft metals (Ag, Au, Pt) can extend their application potential to tribological and biomedical fields. Here, a combination of direct current unbalanced magnetron sputtering (DC-UBMS) with high-power pulsed magnetron sputtering (HiPIMS) was used to synthesize silver-doped CrB2+x thin films on unheated substrates. All Ag–CrB2+x thin films were over-stoichiometric with a B/Cr ratio ranging from 2.05 to 2.30 and silver content varying from 3 at.% to 29 at.%. X-ray diffraction demonstrates the amorphous character of the structure in the case of films with silver content ranging from 0 at.% to 8 at.%. A nanocrystalline structure containing a cubic Ag phase is formed in the films with higher silver content. The highest hardness of 26.6 GPa accompanied by the highest value of elastic modulus of 362 GPa was measured in undoped CrB2.3 films. As the silver content in the Ag–CrB2+x thin films increases, the hardness and elastic modulus values gradually decrease to 7.8 GPa and 187 GPa, respectively. The friction properties of CrB2.3 films, expressed by the coefficient of friction against a steel ball of 0.72, are insufficient and limit their use in demanding industrial applications. However, silver doping significantly reduces the friction coefficient when the lowest value of 0.39 is measured in moderately hard Ag–CrB2+x films with an Ag content of 17 at.%. The scratch test shows satisfactory adhesion of films to substrates even without additional heating during deposition.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13050824