Pazopanib stimulates senescence of renal carcinoma cells through targeting nuclear factor E2‐related factor 2 (Nrf2)

Renal cell carcinoma (RCC) is the most common kidney cancer with high mortality rate. Pazopanib has been approved for the treatment of RCC. However, the underlying mechanism is not clear. Here, we report a novel finding by showing that treatment with Pazopanib could promote cellular senescence of th...

Full description

Saved in:
Bibliographic Details
Published inJournal of biochemical and molecular toxicology Vol. 38; no. 4; pp. e23689 - n/a
Main Authors Wang, Xingyuan, Yang, Jing, Li, Dechao, Teng, Lichen, Chen, Yongsheng, Meng, Jie, Yang, Chen, Yin, Zhihao, Li, Changfu
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Renal cell carcinoma (RCC) is the most common kidney cancer with high mortality rate. Pazopanib has been approved for the treatment of RCC. However, the underlying mechanism is not clear. Here, we report a novel finding by showing that treatment with Pazopanib could promote cellular senescence of the human RCC cell line ACHN. Cells were stimulated with 5, 10, and 20 μM Pazopanib, respectively. Cellular senescence was measured using senescence‐associated β‐galactosidase (SA‐β‐Gal) staining. Western blot analysis and real‐time polymerase chain reaction were used to measure the mRNA and protein expression of nuclear factor E2‐related factor 2 (Nrf2), γH2AX, human telomerase reverse transcriptase (hTERT), telomeric repeat binding factor 2 (TERF2), p53 and plasminogen activator inhibitor (PAI). First, we found that exposure to Pazopanib reduced the cell viability of ACHN cells. Additionally, Pazopanib induced oxidative stress  by increasing the production of reactive oxygen species, reducing the levels of glutathione peroxidase, and promoting nuclear translocation of Nrf2. Interestingly, Pazopanib exposure resulted in DNA damage by increasing the expression of γH2AX. Importantly, Pazopanib increased cellular senescence and reduced telomerase activity. Pazopanib also reduced the gene expression of hTERT but increased the gene expression of TERF2. Correspondingly, we found that Pazopanib increased the expression of p53 and PAI at both the mRNA and protein levels. To elucidate the underlying mechanism, the expression of Nrf2 was knocked down by transduction with Ad‐ Nrf2 shRNA. Results indicate that silencing of Nrf2 in ACHN cells abolished the effects of Pazopanib in stimulating cellular senescence and reducing telomerase activity. Consistently, knockdown of Nrf2 restored the expression of p53 and PAI in ACHN cells. Based on these results, we explored a novel mechanism whereby which Pazopanib displays a cytotoxicity effect in RCC cells through promoting cellular senescence mediated by Nrf2.   Highlights Pazopanib induced oxidative stress and nuclear translocation of Nrf2 in ACHN cells Pazopanib led to DNA damage and cellular senescence in ACHN cells The protective effects of Pazopanib are mediated by Nrf2
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1095-6670
1099-0461
DOI:10.1002/jbt.23689