Molecular and morphometric data provide evidence of intraspecific variation in shape and pigmentation pattern in Otocinclus cocama (Siluriformes: Loricariidae) across major river drainages

Otocinclus cocama, a uniquely colored species of the loricariid catfish genus Otocinclus described solely from the type locality in the lower Ucayali River in northern Peru, is reported occurring in the Tigre River, a tributary to the Marañón River that drains a different section of the Andean Mount...

Full description

Saved in:
Bibliographic Details
Published inJournal of fish biology Vol. 104; no. 4; pp. 1042 - 1053
Main Authors Mejia, Eduardo, Reis, Roberto E.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Otocinclus cocama, a uniquely colored species of the loricariid catfish genus Otocinclus described solely from the type locality in the lower Ucayali River in northern Peru, is reported occurring in the Tigre River, a tributary to the Marañón River that drains a different section of the Andean Mountain range in the western Amazon. Both populations differ in the number of dark bars spanning the flanks of the body, and we investigated whether these morphotypes constitute distinct species. The body shapes of populations from the Tigre and Ucayali rivers were compared using geometric morphometrics. Although principal component analysis detected a broad overlap between populations, multivariate analysis of variance and linear driscriminat analysis revealed a subtle differentiation between the populations of the two hydrographic basins. Average body shape of the Ucayali River population tend to be slightly higher than that of the Tigre River, with the caudal peduncle stretched vertically in the Ucayali population. Multivariate regression of shape and centroid size revealed an allometric effect of 10.7% (p < 0.001), suggesting that the variation between Tigre and Ucayali populations was purely shape variation. Molecular data of coI, cytb, nd2, and 16S mitochondrial genes indicated a nucleotide diversity range from 0.001 to 0.003, and haplotypic diversity range from 0.600 ± 0.11 to 0.79 ± 0.07. The median‐joining haplotype network for the concatenated matrix exhibited two divergent haplogroups related to the geographic area and separated by <10 mutational steps. The molecular species delimitation methods based on distance (automatic barcode gap discovery and assemble species by automatic partitioning) recovered two molecular lineages evolving independently, being one of the lineages formed by individuals from both populations. Tree‐based methods (generalized mixed Yule coalescent and Bayesian implementation of the Poisson tree process) recovered similar topologies and supported single lineage recognition. Methods of molecular delimitation of species disclosed the high similarity between the two populations of Otocinclus cocama, further supported by the presence of old haplotypes common to both groups which could indicate that the populations still maintain gene flow. Although the morphological data reveal a subtle variation between both river basins, the molecular data suggest a weak population structuration based on hydrographic areas, but not different species lineages, therefore Otocinclus cocama is composed of a single lineage with two distinct morphotypes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1112
1095-8649
DOI:10.1111/jfb.15639