Extraction of interface state density and resistivity of suspended p-type silicon nanobridges
The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications. A combined theory/experimental approach for de- termining the resistivity and the density of interface states of the bending silicon nan...
Saved in:
Published in | Journal of semiconductors Vol. 34; no. 5; pp. 7 - 12 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications. A combined theory/experimental approach for de- termining the resistivity and the density of interface states of the bending silicon nanobridges is presented. The suspended p-type silicon nanobridge test structures were fabricated from silicon-on-insulator wafers by using a standard CMOS lithography and anisotropic wet etching release process. After that, we measured the resistance of a set of silicon nanobridges versus their length and width under different bias voltages. In conjunction with a theoretical model, we have finally extracted both the interface state density of and resistivity suspended silicon nanobridges under different bending deformations, and found that the resistivity of silicon nanobridges without bending was 9.45 mΩ.cm and the corresponding interface charge density was around 1.7445 × 10^13 cm-2. The bending deformation due to the bias voltage slightly changed the resistivity of the silicon nanobridge, however, it significantly changed the distribution of interface state charges, which strongly depends on the intensity of the stress induced by bending deformation. |
---|---|
Bibliography: | interface state density; resistivity; silicon nanobridges; bias voltages Zhang Jiahong, Liu Qingquan, Ge Yixian, Gu Fang, Li Min, Mao Xiaoli(1, and Cao Hongxia(~g~)x 1Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China 2College of Physics & Opto-Electronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China) 11-5781/TN The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications. A combined theory/experimental approach for de- termining the resistivity and the density of interface states of the bending silicon nanobridges is presented. The suspended p-type silicon nanobridge test structures were fabricated from silicon-on-insulator wafers by using a standard CMOS lithography and anisotropic wet etching release process. After that, we measured the resistance of a set of silicon nanobridges versus their length and width under different bias voltages. In conjunction with a theoretical model, we have finally extracted both the interface state density of and resistivity suspended silicon nanobridges under different bending deformations, and found that the resistivity of silicon nanobridges without bending was 9.45 mΩ.cm and the corresponding interface charge density was around 1.7445 × 10^13 cm-2. The bending deformation due to the bias voltage slightly changed the resistivity of the silicon nanobridge, however, it significantly changed the distribution of interface state charges, which strongly depends on the intensity of the stress induced by bending deformation. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/34/5/052002 |