Fabrication of Ti ohmic contact to n-type 6H-SiC without high-temperature annealing

The effect of surface morphology of 6H-SiC substrate on the ohmic contact properties of Ti/6H-SiC structure is studied. The H-terminated surface on Si-face 6H-SiC is obtained by both dipping SiC into HF acid solution for 15 s and thermal heating SiC in hydrogen atmosphere at 1100 ℃ for 10 min, while...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 9; pp. 410 - 413
Main Author 常少辉 刘学超 黄维 熊泽 杨建华 施尔畏
Format Journal Article
LanguageEnglish
Published 01.09.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/9/096801

Cover

More Information
Summary:The effect of surface morphology of 6H-SiC substrate on the ohmic contact properties of Ti/6H-SiC structure is studied. The H-terminated surface on Si-face 6H-SiC is obtained by both dipping SiC into HF acid solution for 15 s and thermal heating SiC in hydrogen atmosphere at 1100 ℃ for 10 min, while the H-terminated surface on C-face 6H-SiC could be obtained only by the latter method. Ti is deposited on Si-face and C-face SiC substrates with H-terminated surfaces and ohmic contact is obtained without high-temperature annealing.
Bibliography:Ti contact, 6H-SiC, HF acid, H2 treatment
The effect of surface morphology of 6H-SiC substrate on the ohmic contact properties of Ti/6H-SiC structure is studied. The H-terminated surface on Si-face 6H-SiC is obtained by both dipping SiC into HF acid solution for 15 s and thermal heating SiC in hydrogen atmosphere at 1100 ℃ for 10 min, while the H-terminated surface on C-face 6H-SiC could be obtained only by the latter method. Ti is deposited on Si-face and C-face SiC substrates with H-terminated surfaces and ohmic contact is obtained without high-temperature annealing.
Chang Shao-Hui, Liu Xue-Chao, Huang Wei, Xiong Ze, Yang Jian-Uua, and Shi Er-Wei Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/9/096801