Listeria monocytogenes in ready-to-eat (RTE) delicatessen foods: Prevalence, genomic characterization of isolates and growth potential

This study investigated Listeria monocytogenes prevalence and count in 132 ready-to-eat (RTE) delicatessen samples belonging to different categories (starters with/without mayonnaise pasta/rice-based courses, meat/fish-based main courses) produced by an Italian industry. Whole Genome Sequencing char...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of food microbiology Vol. 410; p. 110515
Main Authors Tirloni, E, Centorotola, G, Pomilio, F, Torresi, M, Bernardi, C, Stella, S
Format Journal Article
LanguageEnglish
Published Netherlands 30.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study investigated Listeria monocytogenes prevalence and count in 132 ready-to-eat (RTE) delicatessen samples belonging to different categories (starters with/without mayonnaise pasta/rice-based courses, meat/fish-based main courses) produced by an Italian industry. Whole Genome Sequencing characterized the isolates to map the pathogen circulation. Moreover, the growth potential of L. monocytogenes in the most contaminated product was investigated by a challenge test. L. monocytogenes was detected in 23 samples, giving an estimated prevalence of 17.4 %. Starters with mayonnaise showed a very high prevalence (56.7 %), showing the role of the sauce in the diffusion of the pathogen within the plant. A total of 49 isolates were obtained; they belonged to two different serogroups, IIb and IIa, and were related to two clonal complexes (CCs) and sequence types (STs) (CC288-ST330 and CC121-ST717), suggesting the possible persistence and circulation of the pathogen within the plant. The results of the challenge test showed a limited ability to grow in the selected product thanks to the presence of lactic microflora.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-1605
1879-3460
DOI:10.1016/j.ijfoodmicro.2023.110515