Wiedemann effect of Fe-Ga based magnetostrictive wires
(Fes3Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fes3Ga17alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires a...
Saved in:
Published in | Chinese physics B Vol. 21; no. 8; pp. 476 - 481 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/8/087501 |
Cover
Summary: | (Fes3Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fes3Ga17alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires are investigated. The largest observed Wiedemann twists of 245 s.cm-1 and 182 s.cm-1 are detected in the annealed Fes3Ga17 and (Fe83Ga17)98Cr2 wires, respectively. The magnetostrictions of the annealed Fes3Ga17 and (Fes3Ga17)98Cr2 wires are 160 ppm and 107 ppm, respectively. The maximum of the Wiedemann twist increases with magnetostriction increasing. However the magnetostriction is just one important factor that affects the Wiedemann effect of alloy wire, and the relationship between magnetostriction and Wiedemann effect is a complex function rather than a simple function. |
---|---|
Bibliography: | Fe-Ga alloy, wires, Wiedemann effect, magnetostriction (Fes3Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fes3Ga17alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires are investigated. The largest observed Wiedemann twists of 245 s.cm-1 and 182 s.cm-1 are detected in the annealed Fes3Ga17 and (Fe83Ga17)98Cr2 wires, respectively. The magnetostrictions of the annealed Fes3Ga17 and (Fes3Ga17)98Cr2 wires are 160 ppm and 107 ppm, respectively. The maximum of the Wiedemann twist increases with magnetostriction increasing. However the magnetostriction is just one important factor that affects the Wiedemann effect of alloy wire, and the relationship between magnetostriction and Wiedemann effect is a complex function rather than a simple function. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/8/087501 |